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Yukawa coupling. We show that ’t Hooft anomaly matching is satisfied, in most of the

phase diagram, via the minimal solution in either the massless fermion or “Goldstone”
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spectrum at strong coupling is thus consistent with long-distance unitarity. We discuss the
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of anomaly-free mirror-fermion sectors.
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1 Introduction, summary, and conclusions

1.1 Motivation

Understanding the dynamics of strongly-coupled chiral gauge theories is a long-standing

problem, where little has been learned since the 1980s [1].1 While not motivated by a

pressing need to explain current data, this issue has its own theoretical interest and appeal.

Strong chiral dynamics may gain physical applications in the future, should results from

the LHC indicate that strong interactions play a role in physics near the TeV scale.

This paper is on a topic even more theoretical than that of studying strong chiral

gauge dynamics — the problem of constructing a gauge invariant lattice formulation of

chiral gauge theories. Different approaches and the status of this subject are reviewed

in [5–7].

1.2 The idea

The idea that will be pursued here is, in its essence, a relatively old one, to the best of

our knowledge due to Eichten and Preskill (EP) [8] (but see also the work of Smit [9]).

EP proposed to use the strong-coupling symmetric phases [10–14], which occur in lattice

theories with non-gauge — e.g., four-fermi, or Yukawa — interactions, to decouple the

mirror fermions from a vectorlike gauge theory. The goal is to thus obtain, at long-distances,

an unbroken gauge theory with massless chiral fermions in a complex representation.

The strong-coupling symmetric phases are a lattice artifact, similar to high- tempera-

ture phases in statistical mechanics, where correlations range at most over a lattice spacing

with no interesting dynamics at long distances.2 The idea of EP, appropriately rephrased

to suit our current context, is to let strong non-gauge interactions act only on the mirror

fermions and use the short-range correlations to decouple them from the infrared physics.

One can describe the decoupling as the binding, due to the strong interactions, of all mirror

chiral fermions into gauge-singlet or vectorlike composites with mass of order the lattice

cutoff. In this picture of strong non-gauge mirror dynamics, due to asymptotic freedom,

the gauge interactions play only the spectator role of weakly gauged global symmetries

(for a recent study of the decoupling of scalars in a strong-coupling symmetric phase in

a simple toy model with gauge fields, see [15]). Ideas closely related to that of EP have

received attention in the past. In all cases studied, it was found that either the mirrors fail

to decouple from the long distance physics or the purportedly light fermions also obtain

mass [16–22].

Despite the failed early attempts, a proposal to revisit the EP idea in light of the

relatively recent progress in exact lattice chiral symmetry was made not long ago [23]

(a suggestion along similar, but not identical, lines had been made earlier in [24]). This

1With the exception of some progress in chiral gauge theories with N=1 supersymmetry [2, 3] and recent

advances in the study of semiclassical chiral dynamics [4].
2Often, the question of the “triviality” of Yukawa interactions is raised when strong Yukawa interactions

are mentioned. We note that in our context, triviality — interpreted as the absence of any long-distance

physics in the strong-coupling symmetric phase — is to be advantageously exploited, since the goal of the

Yukawa interactions is to keep all mirror fermions at the cutoff scale (see, e.g. [8]).
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renewed interest was motivated by the fact that in the pre-1997 formulations of vectorlike

gauge theories on the lattice chiral symmetries were explicitly broken. The absence of

an exact chiral symmetry without doublers makes it impossible to split a lattice Dirac

fermion field into chiral components — one to be henceforth called a “mirror” and the

other “light.” As a result, any strong non-gauge interaction inevitably couples to both the

“mirror” and “light” components of the vectorlike fermion. The analysis of the strong

dynamics — clearly not purely “mirror” — of the chiral symmetries and their realization

then becomes involved and ambiguous. Most importantly, previous formulations lacked a

manifest symmetry explaining why some chiral fermions should stay exactly massless while

others could obtain mass; instead, chiral symmetries distinguishing “light” from “mirror”

modes and protecting the “light” modes were expected to somehow emerge at special values

of the couplings.

In contrast, the recently discovered exact lattice chiral symmetries without doublers,

defined via the Ginsparg-Wilson (GW) relation [25] and the Neuberger-Dirac operator [26–

30], permit the splitting of a lattice vectorlike fermion into “light” and “mirror” compo-

nents. Ward identities for anomalous [31–35] and anomaly-free global symmetries hold

at finite lattice spacing and volume, ensuring that the chiral symmetries that protect the

light fermions from acquiring mass are exact. Thus, EP-like ideas for the decoupling of the

mirror fermions can now be elegantly formulated using exactly chiral lattice fermions [23].

This elegant realization of symmetries comes at a price, however, as one still has to show

that the strong mirror dynamics decouples the mirror fermions. The study of the mirror

theory dynamics is now complicated by the exponential-only3 locality of the Neuberger-

Dirac operator — this is in contrast with local-fermion formulations (whose drawback is

the already-mentioned lack of a manifest “light”-“mirror” split) where the mirror dynamics

can be studied via a relatively straightforward strong-coupling expansion.

The lack of an obvious controlled expansion implies that the mirror fermion dynamics

in a formulation of the EP idea with GW fermions has to be investigated via Monte Carlo

methods. Due to the high cost of simulations with exactly chiral fermions, such studies

are in their infancy. On the other hand, since the issues considered are ones of principle,

analyzing two-dimensional models is a sensible first step. Clearly, showing that the ideas

work in two dimensions will not prove that four dimensional chiral gauge theories can be

similarly formulated, but the results are likely to provide insight into the relevant mirror

dynamics. Another appropriate simplification is to neglect the gauge field fluctuations,

since gauge fields play a spectator role to the strong mirror dynamics. If the strong non-

gauge mirror dynamics gives the mirror fermions mass of order the lattice cutoff (in a

manner alluded to above), asymptotic freedom of the gauge interactions and the exact

chiral symmetry of the light fermions lead us to expect that turning on dynamical gauge

fields will not significantly affect the mirror dynamics or lift the massless modes. Including

dynamical gauge fields would thus only make sense after the mirror decoupling in zero

gauge background is demonstrated.

3Exponential locality holds subject to the “admissibility condition” on the gauge field background [36,

37].
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1.3 Its status and a question

The one existing Monte Carlo study, by Giedt and one of us (E.P.) [38], is of the two-

dimensional massless Schwinger model with strong mirror interactions added, à la EP, in

an attempt to decouple one of the chiral components of the Dirac fermion. On general

grounds, one expects that it should not be possible to decouple the mirror and have an

unbroken gauge symmetry in this model, since the resulting long-distance theory — the

chiral Schwinger model — would be anomalous [39, 40]. Nevertheless, this potentially

“pathological” setup is the easiest allowing to address questions such as the phase structure

of the mirror interactions with GW fermions, because of its simplicity and associated low

cost of simulation

In [38], the strong dynamics of the mirror sector of this model was studied via a Monte

Carlo simulation, in a vanishing gauge background. It was found that the (would-be-

gauged) chiral symmetry of the mirror theory is unbroken4 and, thus, the strongly-coupled

symmetric phase exists in this model, in a large region of the mirror-coupling space. More

intriguingly, Green’s functions of local operators probing the charged fermion spectrum,

elementary or composite, showed no evidence for long-range correlation — and thus for

massless charged particles. These results are clearly puzzling, as gauging the unbroken

global chiral symmetry would give rise to an anomalous unbroken gauge theory.

The purpose of this paper is to gain a more detailed understanding of the resolution

of this puzzle. In particular, we would like to know what happens when one attempts to

decouple mirrors in anomalous representations using non-gauge strong interactions. There

appear to be two possibilities, in a Euclidean rotation-invariant theory: a.) taking the

mirror interactions of GW fermions strong leads to an inconsistent theory in the continuum

limit5 or b.) there are massless charged states — Goldstone bosons or fermions — canceling

the light fermion anomaly, which were somehow missed in [38].

We first addressed this question in [41]. We showed that the partition function of a

general vectorlike theory can be split into a light and mirror part in an arbitrary gauge

background, each part containing a chiral fermion representation. We also demonstrated,

generalizing results of Neuberger [43] and Lüscher [44–46] to arbitrary chiral actions, that

while the partition function of the vectorlike theory is a smooth function of the gauge

background, the splitting of the partition function is singular — its light and mirror parts

each have singularities in gauge-field space — iff the mirror and light fermion representa-

tions are not separately anomaly-free. While these results indicated that anomalous and

anomaly-free mirror theories differ in an essential way, as Golterman and Shamir pointed

out soon thereafter [47], the singularity of the light-mirror split of the partition function

does not resolve the puzzle alluded to above (see also the Addendum of [41]). This is

because the singularity of the light-mirror split is topological and thus there is freedom

— not unlike the ability to move the location of a Dirac string — to render the split of

the partition function locally smooth at any point in gauge field space. Hence, as will be

4We will liberally use this term in the two-dimensional context here, instead of the more appropriate

but unwieldy “lack of algebraic order.”
5For example, a nonunitary theory, where the imaginary part of the Euclidean polarization operator is

nonlocal, but the real part is local, see section 3.3.
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further expanded upon in this paper, there is still a puzzle in the case where the gauge

field is non-dynamical, as in the simulations of [38].

As we will see in this paper, our previous results [41] provide us with important tools

to further study the attempted decoupling of an anomalous representation. Since the two-

dimensional model studied in [38] is the simplest theory with nontrivial mirror dynamics

and is relatively inexpensive to simulate, understanding the answer to our question in detail

is bound to give us clues as to the working of the EP proposal formulated with exactly

chiral lattice fermions. In particular, we hope to distinguish between the possibilities (a.

and b.) outlined two paragraphs above.

1.4 Outline and summary

We begin in section 2, by first describing the deformation of the Schwinger model, studied

in [38], that we call the “1-0” model. While this model is the subject of our numerical

studies here, the analytical results of this paper are more generally applicable. In the end

of section 2, we review the main results of [41], notably the “splitting theorem” about

arbitrary variations of general chiral partition functions with the gauge background, as

this technical result is one of the major tools making this study possible.

The considerations of the following section 3 are quite general and apply to any EP-

like model in either two or four dimensions. We first show that gauge invariance of the

full partition function, combined with the local smoothness of the light-mirror split, im-

plies certain anomaly matching conditions on correlation functions of gauge currents in

the mirror theory. In two dimensions, the simplest nontrivial condition is on the two-

point function in vanishing gauge background, i.e. on the polarization operator.6 The

anomaly-matching conditions on two- or three-point functions of the mirror gauge current

in vanishing gauge background are exact and do not depend on the details (i.e. strength)

of the mirror-sector interactions — a simple consequence of the “splitting theorem” [41].

We note that the anomaly matching conditions do not require dynamical gauge fields and

introducing infinitesimal gauge backgrounds is sufficient to establish them.

The conditions derived in section 3.3 are the equivalent of ’t Hooft anomaly match-

ing in theories with strong infrared dynamics: whatever the strong mirror dynamics, the

mirror spectrum — assuming long-distance unitarity — has to be such that these anomaly

matching conditions hold. A further similarity is that these conditions can be also usefully

applied to symmetries that are not gauged in the target theory.7 The fact that conditions

like ’t Hooft anomaly matching should be obeyed by a strongly-coupled mirror theory on

the lattice should not come as a surprise — that they can be precisely formulated and

studied already in finite volume and lattice spacing is an immediate consequence of the

existence of exact chiral lattice symmetries.

6In four dimensions with zero gauge background one would have to consider the three-point function to

exhibit the effect of the anomaly; however a study of the polarization operator would still be of use as a

probe for the existence of massless charged states.
7In section 1.5, we give an example showing how anomaly matching implies that a seemingly viable

mirror theory for the anomaly-free “345” chiral U(1) gauge theory is bound to produce massless mirror

modes.

– 5 –



J
H
E
P
0
3
(
2
0
0
9
)
1
0
3

As usual in strongly-coupled theories, finding out how anomaly matching conditions

are obeyed is a nontrivial dynamical question, to which we turn next. In section 3.3, we

review the Goldstone and massless chiral fermion modes of solving anomaly matching and

explain how we expect to distinguish between the two in our numerical simulations of the

1-0 model. Then, in section 3.4, we list a number of exact properties of the polarization

operators of arbitrary chiral theories (such as our mirror theory), which are independent

of the couplings and are derived in appendix A. The verification of these properties in a

Monte Carlo simulation is used to provide important checks on its consistency.

In order to learn how anomaly matching is realized in the 1-0 model, in section 4 we

begin the study of the mirror polarization operator. We first present the rather technical

derivation of the mirror-theory gauge two-point function. Since the details hold for general

theories and may be of interest for future studies, we explain them in several steps in

sections 4.1 and 4.1.1. The final expression of the mirror polarization operator in terms of

correlation functions of the mirror theory (to be computed via Monte Carlo methods) is

given in section 4.1.2. Further details needed to express the correlator via variables used

in the actual simulation are given in appendices B, C, D.

As already stated, our main interest is in the polarization operator of the mirror theory.

The real part of the polarization operator at long distances contains information on the

existence and number of massless charged degrees of freedom of the mirror theory. In

Euclidean space, the imaginary part contains the mirror contribution to the anomaly. As

a check on our simulation, we have, in each case listed below, verified that the divergence

of the imaginary part is exactly as required by anomaly matching (and is thus equal to the

negative of the divergence of the free light fermion polarization operator).

The Monte Carlo results of this paper are presented in section 4.2. We begin by first

explaining our strategy for looking for massless poles in the polarization operator on an

8 × 8 lattice8 via its small-momentum discontinuity as a function of direction. In figure 1,

we show the small-momentum discontinuity of the real part of the light-theory polarization

operator — that of a free chiral GW fermion, defined in eq. (A.5) of appendix A. In later

sections, we compare the analytic free-fermion result of figure 1 to the Monte Carlo results

for the strongly interacting mirror sector.

In section 4.2.2, we show the results of the Monte Carlo study of the mirror theory

in the strong-coupling symmetric phase. This phase — where all mirror-sector global

symmetries, apart from the (would-be) gauge symmetry, are explicitly broken by the non-

gauge mirror interactions — would be of most interest for mirror-decoupling à la EP

in anomaly-free models. We compute the mirror polarization operator and look for the

presence of small-momentum discontinuities. The results for the real part of the mirror

polarization operator for different values of the mirror couplings, shown in figures 2, 3, 4,

and 5, are strikingly similar to the free-fermion result of figure 1. The numerical values

and small-momentum discontinuity of the mirror polarization operator indicate that the

number of massless charged degrees of freedom in the strong-coupling symmetric phase is

the minimal one needed to satisfy anomaly matching. These results show that the strong

8As we explain later, the computational demands of the problem limit us to a rather small lattice.
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mirror dynamics obeys ’t Hooft anomaly matching and, in this phase, gives rise to a single

massless charged chiral fermion, realizing the possibility b.) of section 1.3 via the minimal

solution with massless fermions.

In section 4.2.3, we study the mirror theory in the broken phase, where the “spin-spin”

coupling κ is large, see (2.2). The discontinuity of the real part of the polarization operator

in figure 6 is now consistently interpreted as due to a massless scalar (“Goldstone boson”)

and shows that ’t Hooft anomaly matching is obeyed in the Goldstone mode. This is easily

explained, as the physics in this phase can be understood in perturbation theory, even at

strong Yukawa coupling [38].

In section 4.2.4, we study the strong-coupling symmetric phase with vanishing Ma-

jorana Yukawa coupling, h → 0 of eq. (2.1). The real part of the polarization operator,

shown on figure 7, has, as in the h > 1 phase, a discontinuity like that of the free chiral

fermion. However, the numerical values of the real part of the polarization operator are

approximately (we are in a rather small volume) three times larger. This difference is due

to the presence of three massless charged chiral degrees of freedom — a massless chiral

fermion and a massless vectorlike pair.9 Thus, the spectrum in this phase is consistent

with ’t Hooft anomaly matching, but has more massless charged fermions than required by

anomaly matching. This is explained in section 5, where we also show that only at h = 0

we have analytic control over the symmetric phase.

The final numerical result of this paper is presented in section 4.2.5, where we study the

scaling of the real part of the κ-dependent contributions to the polarization operator deep

in the strong-coupling symmetric phase (for decreasing values of κ→ 0). As figure 8 shows,

these terms do not contribute to the discontinuity of the polarization operator. Thus, the

discontinuities, and hence the massless fermions, in the strong-coupling symmetric phases

arise from the terms containing solely mirror-fermion current-current correlators.

In section 5, we use another representation of the partition function, obtained via a

field redefinition. This representation is particularly useful to analytically interpret the

results from section 4.2.4, in the vanishing Majorana coupling strong-coupling symmetric

phase (unfortunately, this is not the phase which would be useful for the study of decou-

pling in anomaly-free models), and explains the origin of the three massless modes found

numerically in figure 7.

For convenience of the reader, our conclusions are given in section 1.5 below. We

stress again the main results of this paper — that ’t Hooft anomaly matching holds in

lattice theories with strong non-gauge dynamics and (assuming unitariry) imposes impor-

tant constraints on the spectrum at strong coupling. Our Monte Carlo study of the “1-0”

model mirror dynamics shows that the anomaly matching conditions are obeyed by the

mirror theory. In every region of the phase diagram we studied, the strong GW-fermion

mirror dynamics gives rise to massless charged states, realizing option b.) of section 1.3 —

in a manner consistent with unitarity of the long-distance theory. Finally, we discuss the

implications of these results for anomaly-free models and outline directions for future study.

9The massless vectorlike pair does not contribute to the anomaly; as a consistency check, we have verified

that the divergence of the imaginary part of the polarization operator is as required by anomaly matching.

– 7 –



J
H
E
P
0
3
(
2
0
0
9
)
1
0
3

1.5 Conclusions, and where do we go next?

The discussion of this paper shows that when a fermion formulation with exact lattice chi-

rality is used, the question of decoupling the mirror fermions from a vectorlike gauge theory

is intimately intertwined with their contributions to anomalies. While this conclusion is

not unexpected, these issues have usually not been central to past studies (including our

own) of attempts to decouple the mirror fermions in strong-coupling symmetric phases.

Such studies were usually confined to purely non-gauge strong dynamics at the scale of the

lattice spacing, without much emphasis on possible mirror-sector contributions to anoma-

lies. This is largely because correlators of global chiral currents in the mirror theory could

not be studied, as the exact lattice chiral symmetries (which enabled us to establish many

exact properties of these correlators already at finite lattice spacing and volume) were not

known. The main contribution of this paper is the precise formulation on the lattice of ’t

Hooft’s anomaly matching conditions, applied to strong mirror interactions, and the study

of their solution in a particular example.10

This paper shows that models with mirror Yukawa interactions formulated via ex-

act lattice chirality are “smart” enough that, consistent with anomaly matching, in the

strong-coupling symmetric phase they lead to massless degrees of freedom, rather than

to a nonunitary theory. In our simple toy model, the minimal number of chiral fermions

needed to cancel the light fermion anomaly remain massless in the strong-coupling sym-

metric phase. The mirror spectrum emerging from the cutoff-scale strong dynamics obeys

’t Hooft anomaly matching and is consistent with the preservation of (would-be-gauged)

unbroken global symmetries.

A final obvious question is what our results here imply for anomaly-free models. Con-

sider, for example, the “3-4-5” model, a two dimensional chiral U(1) gauge theory with

3−, 4− and 5+ massless fermions (the number indicates the U(1) charge and ± the chi-

rality). A direct argument predicting massless mirror states, based on the nonvanishing

gauge anomaly of the light sector, can not be applied now. What our current knowledge

allows us to say for sure is that whether there are massless mirror states — or not —

depends on the implementation of the strong mirror interactions, in particular on their

symmetries.

The anomaly matching conditions find another use in this regard, as we now ex-

plain. Consider implementing the decoupling or mirrors from a vectorlike theory with

three Dirac fermions of charges 3, 4, 5 by adding three uncharged mirror fermions and

three unitary scalars, i.e. taking three copies of the 1-0 model and appropriately changing

charges/chiralities (one could call the three copies the 3-0, 4-0, and 5-0 models). From

our comments above, it is clear that such an implementation of the 345 model would

lead to massless mirror states already in trivial gauge background, despite two facts that

might suggest otherwise: that the mirror and light spectra are anomaly-free and that,

when the global U(1) appropriate to yield the 345 model is gauged, both the anomaly-free

and anomalous global symmetries of such a lattice implementation are as in the target

10Thus, comparing figure 1 to figures 2–7 can be considered a Monte Carlo “proof” of ’t Hooft anomaly

matching.
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continuum theory. The easiest way to see that massless modes will result at zero gauge

background is to weakly gauge the three separate global U(1) symmetries present in the

3-0, 4-0, and 5-0 models and demand consistency of the two-point current correlators, as

we did in this paper.

A general way to phrase the condition that the mirror interactions should obey in

order to avoid massless states due to anomaly matching from an extra global symmetry

is to demand that when the gauge interactions are turned off, the mirror theory should

have no global symmetries other than the global part of the gauge group. With gauge

interactions turned off, the implementation of the 345 model of the previous paragraph has

two extra global U(1)s, which act simultaneously on the light and mirror components and

thus impose further conditions on the mirror spectrum implying the existence of massless

modes.

This example leads us to conjecture that if the mirror interactions couple the 3+,

4+, and 5− mirrors by adding only one scalar and a single neutral 0− mirror fermion

(needed to have a sensible static limit, see [23]), including the most general gauge-invariant

couplings breaking all mirror global chiral symmetries, there wouldn’t be any massless

mirror states in the strong-coupling symmetric phase. At the moment, our strongest

argument is that with all the mirror global symmetries explicitly broken, there is no

reason we know of, such as anomaly cancellation of any symmetry, for massless mir-

rors to exist for all values of the couplings. Conversely, if a future study finds that

massless mirror fermions exist for all values of the mirror couplings, absent any global

chiral symmetry in the mirror sector, we expect that there should be some other rea-

son for this — a symmetry or a deeper dynamical principle we are not yet aware of.

Needless to say, it would be of great interest to understand what this principle might

be.

Finding out whether our conjecture above is true is left for future work. Two avenues

for progress seem promising: i.) coming up with a theoretical argument why decoupling

should always fail and ii.) verifying or refuting our conjecture via a numerical “experiment”,

similar to the one of this paper, but this time with an anomaly-free model. Since no

dynamical gauge fields are needed at this stage, the study of (say) the 345-mirror dynamics

is quite feasible given appropriate computer resources and the techniques already developed

in [38, 41], and the present paper.

2 The “1-0” model and the “splitting theorem”

The Yukawa-Higgs-GW-fermion model considered here, which we call the “1-0” model, is

a U(1) two-dimensional lattice gauge theory with one Dirac fermion ψ of charge 1 and a

neutral spectator Dirac fermion χ. Considering this theory is motivated by its simplicity:

it is the minimal Higgs-Yukawa-GW-fermion model in two dimensions which holds the

promise to yield, at strong Yukawa coupling, a chiral spectrum of charged fermions and

is, at the same time, amenable to numerical simulations not requiring the use of extensive

– 9 –
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computing resources. The fermion part of the action of the “1-0” model is:

S = Slight + Smirror (2.1)

Slight = −
(

ψ+ ·D1 · ψ+

)

−
(

χ− ·D0 · χ−
)

Smirror = −
(

ψ− ·D1 · ψ−
)

−
(

χ+ ·D0 · χ+

)

+ y
{

(

ψ− · φ∗ · χ+

)

+
(

χ+ · φ · ψ−
)

+ h
[

(

ψT− · φγ2 · χ+

)

−
(

χ+ · γ2 · φ∗ · ψ
T
−
)]}

.

The chirality components for the charged and neutral fermions are defined by projectors

including the appropriate Neuberger-Dirac operators11 (charged D1 and neutral D0) for

the barred components, i.e. ψ± = ψ(1 ∓ γ̂5)/2 . The brackets denote summation over the

lattice sites as well as a spinor inner product. The field φx = eiηx , |ηx| ≤ π, is a unitary

higgs field of unit charge with the usual kinetic term:

Sκ =
κ

2

∑

x

∑

µ̂

[2 − ( φ∗x Ux,x+µ̂ φx+µ̂ + h.c. )] . (2.2)

The inclusion of both Majorana and Dirac gauge invariant Yukawa terms is due to the re-

quirement that all global symmetries (including those of the mirror fermions) not present

in the desired target chiral gauge theory be explicitly broken, see [23]. Moreover, consis-

tent with the symmetries, if the Majorana coupling h vanishes, there are exact mirror-

fermion zero modes for arbitrary backgrounds φx, which can not be lifted in the disordered

phase [38]. The lattice action (2.1) completely defines the theory via a path integral over

the charged and neutral fermion fields, the unitary higgs field, as well as the gauge fields.

We will not perform the integral over the lattice gauge fields, but will study in detail the

variation of the partition function with respect to the gauge background.

From now on, we will call the fermion fields that participate in the Yukawa interactions

the “mirror” fields — these are the negative chirality component, ψ−, of the charged ψ,

and the positive chirality component, χ+, of the neutral χ — while the fields ψ+ and χ−
will be termed “light.”

Our interest is in the symmetric phase of the unitary higgs theory, expected to occur at

κ < κc ≃ 1, where the higgs field acts essentially as a random variable (modulo correlations

induced by κ 6= 0 and by fermion backreaction). Based on experience with strong-Yukawa

expansions in theories with naive or Wilson fermions, it is expected that in the large-y,

fixed-h limit, there is a symmetric phase.

The analysis of the 1-0 model of ref. [38] was performed in a vanishing gauge back-

ground. The eigenvectors of γ̂5 were explicitly worked out (see also appendix C) and used

to manifestly split the partition function into “light” and “mirror.” A Monte Carlo simu-

lation of the mirror sector at infinite-y and fixed-h was performed. For small values κ < κc
a strong-coupling symmetric phase exists for h > 1 and for12 h → 0, while at h ∼ 0.7

evidence for a Berezinksii-Kosterlitz-Thouless-like transition was found. The spectrum of

the mirror theory was also numerically probed by studying correlators of local operators.

11See appendices B and C for our convention.
12Analytic [48] and Monte Carlo [49] studies of a similar four-dimensional theory with no Majorana

coupling, i.e. at h = 0, also found evidence for a strong-y symmetric phase.
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The evidence found — using local operators to probe the charged fermion spectrum —

pointed toward decoupling of the mirror sector, with no breaking of the chiral symmetry

of the mirror sector (the symmetry to be gauged by the U(1) gauge field).

These results led to the puzzle already alluded to and to the studies of [41] and the

present paper. In [41], we studied the splitting of the partition function into “light” and

“mirror” parts also in an arbitrary nonvanishing gauge background. To remind the reader

of our convention (identical to that used in the simulation of [38] but slightly different from

the one of [41]), we use the definite-chirality eigenvectors of γ̂5 and the projectors P̂± on

the corresponding spaces:

γ̂5ui = −ui , γ̂5wi = wi , (2.3)

P̂− =
∑

i

uiu
†
i , P̂+ =

∑

i

wiw
†
i = 1 − P̂− , (2.4)

where we treat u,w as columns and u†, w† as rows. We also use the eigenvectors of γ5 (the

latter are independent of the gauge background) and the associated projectors P±:

γ5vi = vi , γ5ti = −ti , (2.5)

P+ =
∑

i

viv
†
i , P− =

∑

i

tit
†
i = 1 − P+ . (2.6)

Using (2.3), (2.5), a general Dirac field Ψx, can be decomposed into chiral components

α+
i , α

−
i via the γ5 eigenvectors, while the conjugate spinor field Ψx is decomposed into

chiral components α+
i , α

−
i using the γ̂5 eigenvectors, as follows:

Ψx =
∑

i

αi+vi(x) + αi−ti(x) , (2.7)

Ψx =
∑

i

αi+u
†
i (x) + αi−w

†
i (x) . (2.8)

Applying the split (2.7) to the fields ψ and χ of the “1-0” model, we note that only the

charged eigenvectors (of both light and mirror fields) depend on the gauge background.

The expansions (2.7) of the “mirror” fields are explicitly given below:

χ+ =
∑

i

βi+vi , χ+ =
∑

i

β
i
+u

†
i [0] , (2.9)

ψ− =
∑

i

αi−ti , ψ− =
∑

i

αi−w
†
i [U ] .

Clearly, expansions similar to (2.9) hold for the “light” fields as well:

χ− =
∑

i

βi−ti , χ− =
∑

i

β
i
−w

†
i [U ] , (2.10)

ψ+ =
∑

i

αi+vi , ψ+ =
∑

i

αi+u
†
i [U ] .

After substitution of (2.9), (2.10), the partition function of the model (2.1) splits as

follows:

Z[U ; y, h] = Z+[U ] × 1

J [U ]
× Z−[U ; y, h] . (2.11)
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Here Z+[U ] = det ||(u†i [U ] ·D[U ] · vj)||×(similar determinant for the neutral light spectator

χ−) is the light sector partition function. The jacobian J is a product of jacobians for the

charged and neutral sectors; see [41] for details. The mirror partition function is denoted

by Z− and is given, more explicitly, by an integral over the charged mirrors (α−, α−),

neutral mirrors (β+, β+), and unitary scalar field:

Z−[U ; y, h] =

∫

d2α− d2β+ dφ e−Smirror−Sκ , (2.12)

where the mirror action from (2.1) is expressed in terms of the integration variables α−, β+

and the eigenvectors via (2.9). The mirror fermion integral is thus a determinant which

includes the kinetic term and Yukawa terms from (2.1) and the mirror partition function

is the average of the determinant over the random (in the disordered κ→ 0 phase) unitary

field φx (in (2.12), dφ denotes a path integral over the phases of φ). The mirror partition

function (2.12) with U = 1 was the object used to calculate local mirror observables in the

simulations of ref. [38].

When U 6= 1, the mirror partition function Z− (2.12) depends on the gauge back-

ground through the operators entering Smirror +Sκ (the Neuberger-Dirac operator and the

associated projectors that appear in (2.1)) as well as through the gauge background depen-

dence of the eigenvectors of γ̂5 used to split the partition function (wi[A], see (2.9)). This

dependence was studied in [41], where an important technical result was derived: under an

arbitrary variation of the gauge background, the variation of the mirror partition function,

due to the variations of both the eigenvectors and the operators entering the action, factor-

izes no matter how complicated the mirror partition function is. Explicitly, the “splitting

theorem” states that for an arbitrary variation of the gauge background:

δ logZ−[U ] =
∑

i

(δw†
i · wi) +

〈

δS

δO
δO

〉

, (2.13)

where “〈 · 〉” denote an expectation value calculated with the partition function Z− and O

collectively denotes the various operators depending on the background which appear in

the action (the Neuberger-Dirac operator D and corresponding projectors P̂±). This is an

important result, as it encodes on the lattice the idea that anomalies do not depend on the

action (see the discussion in [41]). Furthermore, as we will see later, the splitting theorem

is indispensible in the calculation of mirror gauge-current correlators in a perturbative

expansion in the gauge field.

Coming back to the full 1-0 model partition function, we note that because the l.h.s.

of (2.11) is manifestly gauge invariant, so is the r.h.s., since it is obtained from the l.h.s.

simply via a (locally) nonsingular change of variables. We know how two of the factors on

the r.h.s. transform under gauge transformations — the light partition function Z+[U ] and

the Jacobian J [U ]−1, for which we have from [41], for infinitesimal gauge transformations

ω (as indicated by the ≃ sign):

Z+[Uω]

J [Uω]
≃ Z+[U ]

J [U ]
exp

(

− i

2
Tr ωγ̂5 −

∑

i

(δωw
†
i · wi)

)

, (2.14)
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where δωui denotes the variation of i-th eigenvector of γ̂5 under a gauge transformation.

Therefore, from (2.14), and the fact that the l.h.s. of (2.11) is gauge invariant, it follows

that the mirror partition function transforms under gauge transformations as:

Z−[Uω; y, h] ≃ Z−[U ; y, h] exp

(

i

2
Trωγ̂5 +

∑

i

(δωw
†
i · wi)

)

, (2.15)

independent not only on the values of the Yukawa couplings (y, h) but also most of the de-

tails of the mirror action. We also note that the “splitting theorem” (2.13), valid for general

variations, gives a direct proof of (2.15) when restricted to gauge transformations [41].

The gauge variation of the mirror partition function leads us to the already mentioned

paradox. The exact result (2.15) shows that the gauge transformation of the mirror parti-

tion function is independent of the Yukawa coupling and should precisely cancel that of the

light chiral fermion (2.14). If, at y → ∞ and h > 1, the mirror sector only involves heavy

degrees of freedom, as the numerical results of [38] suggest, and if these zero-background

results persist for arbitrarily small gauge backgrounds (as one is inclined to expect based on

local smoothness of the basis eigenvectors), then the mirror partition function should be a

local functional of the gauge background. But eq. (2.15) argues that this local functional’s

gauge variation must precisely cancel the anomaly of the light chiral fermion, which is

known to be impossible as the anomaly is not the variation of a local functional.

This question was a major motivation for the study of [41], where we showed that the

“light”–“mirror” split of the partition function is a singular function of the gauge back-

ground in any model where the mirror matter representation is anomalous. In particular,

the mirror partition function (2.12), used in the numerical simulation in [38], has a dis-

continuity precisely at U = 1. We also conjectured there that the singularity of the mirror

partition function might play a role in resolving the paradox, as the results on the mirror

spectrum obtained in [38] via the singular Z− (2.12) may not survive an integration over

the gauge field or even a perturbative expansion around U = 1. While this claim may be

plausible, if the gauge field is considered as an external background, with small fluctuations

around it taken into account perturbatively, a paradox still persists, as is briefly explained

in the Addendum of [41]. This is the issue we want to address here.

3 Smoothness, the light-mirror split, and anomaly matching

We begin this section by stating in a more formal way the conflict between the numerical

results of [38], which found no evidence of long-range correlations in the mirror sector at

y → ∞ and h > 1 (when probed with local charged operators), and eq. (2.15), which

states that the mirror partition function of the 1-0 model should effectively act as a Green-

Schwarz term canceling the light sector anomaly. Our goal here is to formulate the anomaly

matching conditions in a way useful for further study.

3.1 Transversality of the full partition function

The partition function (2.11) of the 1-0-model is gauge invariant, i.e:

lnZ[A+ δωA] = lnZ[A] , (3.1)
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where U(x, x+µ) = eiAµ(x), with δωAµ(x) = −∇µωx, and ∇µωx = ωx+µ−ωx. This implies

that:
∑

µx

δ lnZ[A]

δAµ(x)
∇µω(x) = 0 . (3.2)

Taking δ
δω(x) of (3.2) gives:

∑

µ

∇∗
µx

δ lnZ[A]

δAµ(x)
= 0 , (3.3)

where ∇∗
µωx = ωx−ωx−µ. This, by expanding in Aµ around Aµ = 0, implies transversality

of all n-point functions:

∑

µ

∇∗
µx

δnZ[A]

δAµ(x)δAµ1(x1) . . . δAµn−1(xn−1)

∣

∣

∣

∣

A=0

= 0 . (3.4)

Eq. (3.4) should apply to the full partition function of the 1-0 model (2.1). The derivation

of it assumed that Z[A] is a smooth function of the gauge potential in the vicinity of A = 0.

Smoothness of Z[A] holds because the vectorlike theory has a well defined measure and

an action which is smooth with respect to the gauge background. (We note again that

the singularity discussed in [41] appears separately in the “light” and “mirror” partition

functions; the total partition function is that of the anomaly-free vectorlike theory and is

nonsingular.)

3.2 Local smoothness of the light-mirror split

The singularity in the “light”-“mirror” split of the partition funciton [41] is of topological

nature. In the case when the “light” and “mirror” sectors are anomalous, there is a

topological obstruction to defining their separate fermion measures (or of the “measure

current” of the γ̂5 eigenvectors) as a globally smooth function of the gauge background.

The mirror partition function and correlators studied in [38] depend on the γ̂5 eigenvectors,

which are discontinuous functions of the gauge background when it is turned on.

The topological nature of the singularity means that its location in the space of gauge

backgrounds can be moved around by redefining the phases of the basis vectors (equiva-

lently, of the measure current). An explicit example is discussed in [41] for the homogeneous

Wilson-line subspace. More generally, due to the smoothness of the P̂ projectors, a locally

smooth basis of eigenvectors exists at any given point of the space of gauge backgrounds.13

The possibility of choosing a basis which is locally smooth implies that in an expansion

around Aµ = 0, (3.4) can be applied to the split partition function, as we discuss explicitly

below.

In what follows, we present a lengthy derivation of the anomaly matching condition.

We will use the results obtained here to calculate the contributions to the polarization

13We stress again that smoothness of the GW operator and the chirality projectors holds subject to the

“admissibility condition” on the gauge background [36, 37]. Upon imposing this condition, the gauge filed

configuration space consists of multiple disjoint topological sectors and the said operators are smooth within

each of them [46].
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operator of the gauge field from the “light” and “mirror” fields in later sections. To begin,

we define the polarization operator of the full theory as:

Πµν(x, y) ≡
δ2 lnZ[A]

δAµ(x)δAν(y)

∣

∣

∣

∣

A=0

. (3.5)

Since the full partition function splits as in eq. (2.11), we have that:

lnZ[A] = lnZ+[A] − ln J [A] + lnZ−[A] . (3.6)

Since the split is locally smooth in the neighborhood of Aµ = 0, eq. (3.6) defines a split of

the polarization operator (3.5) into “light” (Π+/J , with the Jacobian contribution included

into the “light” sector) and “mirror” (Π−) parts:

Πµν(x, y) = Π+/J
µν (x, y) + Π−

µν(x, y) . (3.7)

Consider first the “light” polarization operator. Under an arbitary infinitesimal change

δη of the gauge background, the “light” partition function Z+[A] = det(u†i [A] · D[A] · vj)
transforms as:

δη lnZ+[A] = Tr(P+D
−1δηD) +

∑

j

(δηu
†
j · uj)

= Tr(P+D
−1δηD) + juη [A] , (3.8)

where juη [A] is implicitly defined above. Similar formulae are derived in [41] (we only give

this one in detail due to the different convention of this paper — here we use P̂∓ to define

ψ±). We use “Tr” to denote trace over both spinor and space-time indices, and “tr” to

denote summing over spinor indices only. We have also introduced the “measure currents”

ju,wη :

juη [A] ≡
∑

j

(δηu
†
j · uj) , jwη [A] ≡

∑

j

(δηw
†
j · wj) , (3.9)

in terms of which the variation of the Jacobian is given as in [41] (modulo the change of

convention, see eq. (2.16) there):

δη ln J [A] = jwη [A] + juη [A] . (3.10)

By combining (3.8) and (3.10), we find that the “light” plus Jacobian contribution to the

change of Z[A] of (3.6) under a gauge transformation (cf. eq. (2.17) of [41]) is:

δω ln
Z+[A]

J [A]
= −jwω [A] − i

2

∑

x

ωxtrγ̂5 xx[A] , (3.11)

where jω denotes the measure current (3.9) now corresponding to a gauge variation of the

background. Now we take δ
δωx

of (3.11) to find:

δ

δωx

(

δω ln
Z+[A]

J [A]

)

= −δj
w
ω [A]

δωx
− i

2
trγ̂5xx[A] . (3.12)
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Using the identity:
δ

δωx
δωxf [A] =

∑

µ

∇∗
µx

δ

δAµ(x)
f [A], (3.13)

eq. (3.11) is clearly the same as:

∑

µ

∇∗
µx

δ ln(Z+[A]J−1[A])

δAµ(x)
= −

∑

µ

∇∗
µx

∑

i

(δµxw
†
i · wi) −

i

2
trγ̂5xx[A] ,

= −
∑

µ

∇∗
µj
w
µ [A] − i

2
trγ̂5xx[A] , (3.14)

where we introduced the shorthand notation:

δµ ≡ δ

δAµ(x)
(3.15)

for derivatives δµ to be used further (note that for brevity we often suppress the space-time

index which we understand to be included in µ). Finally, we expand (3.14) around Aµ = 0

to linear order, allowed by local smoothness:

∑

µ

∇∗
µx

δ2 ln(Z+[A]J−1[A])

δAµ(x)δAν(y)

∣

∣

∣

∣

A=0

= −∇∗
µ

δjwµ [A]

δAν(y)

∣

∣

∣

∣

A=0

− i

2

δtrγ̂5xx[A]

δAν(y)

∣

∣

∣

∣

A=0

. (3.16)

Eq. (3.16), using our definition (3.5), (3.7) of the polarization operator, is equivalent to:14

∑

µ

∇∗
µxΠ

+/J
µν (x, y) = −∇∗

µ δνj
w
µ [A]

∣

∣

∣

∣

A=0

− i

2
δνtr γ̂5xx[A]

∣

∣

∣

∣

A=0

, (3.17)

showing that the “light” polarization operator is not transverse.

There are two contributions to the r.h.s. of (3.17): the first term, proportional to the

derivative of the “measure current,” exactly cancels with the identical contributions of the

“mirror” sector — see eq. (4.10) for the mirror polarization operator. The second term

on the r.h.s. of (3.17), proportional to the derivative of the topological lattice field trγ̂5xx,

represents the anomaly of the “light” fermions.15 To make contact with the anomaly in

the continuum, we note that the topological lattice field can be expressed as (the four-

dimensional proof of [42] is trivially downgraded to two dimensions):

tr γ̂5xx = − 1

2π
ǫµνF

µν + ∇∗
µh

µ[A] , (3.18)

where Fµν = ∇µAν(x) − ∇νAµ(x) is the field strength of the gauge potential Aµ(x) =

−i ln U(x, µ), hµ[A] is a gauge invariant local current, and ǫ12 = 1. An explicit form of

hµ[A] can be obtained with some work; for example, the part of h linear in A and valid

for all momenta, can be derived using the formulae in appendix D, which also presents a

derivation of the first term in (3.18).

14We include the Jacobian contribution into the light polarization operator; note that in accordance with

the “splitting theorem” it will cancel with a similar contribution from the polarization operator of the

mirror partition function, see [41].
15While equations similar to (3.17) will hold for the non-transverse higher derivatives of the light partition

function, considering only the polarization operator in a trivial gauge background is sufficient to study the

interplay between the anomaly and the light degrees of freedom in 2d. In 4d the trivial gauge background

analysis would have to be extended to the three point function in order to capture the effect of the anomaly.
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3.3 Anomaly matching and its possible solutions

By the local smoothness of the “light”-“mirror” split and by gauge invariance of the full

partition function, the divergence of the “mirror” polarization operator Π−
µν should exactly

cancel (3.17). Since the measure current dependent parts of the “light” and “mirror” po-

larization operators always cancel, the important contribution to the divergence is the one

containing (3.18) and representing the true effect of the anomaly. We write the cancella-

tion requirement in the form — taking the low-momentum limit and implying a sum over

repeated indices:

iqµΠ̃−
µν(q) =

1

2π
ǫνλq

λ + O(q2) , (3.19)

where Π̃ denotes the appropriately defined Fourier transform of the polarization operator

— see (D.1), (D.3), (D.5). Now of course the rhs of (3.18), (3.19) is local, and one wonders

if the usual continuum argument that it can not be the divergence of a local expression

applies on the lattice. A quick argument showing that it does is as follows. Rewrite (3.19)

as the set of two equations for the imaginary part of the polarization operator, denoted

with the same symbol for brevity, with c = −i/(2π):

Π̃−
22 = −(c+ Π̃−

12)
q1
q2
, (3.20)

Π̃−
11 = (c− Π̃−

21)
q2
q1

= (c− Π̃−
12)

q2
q1
,

where we used Π̃12 = Π̃21 due to local smoothness. Locality of Π11 and Π22 would then

require that c−Π̃−
12 = Aq1+ . . ., c+Π̃−

12 = Bq2+ . . ., where A and B are arbitrary constants

and dots denote higher powers of momenta, leading to:

Π̃−
12 = −c+Bq2 + O(q2) , (3.21)

Π̃−
12 = c−Aq1 + O(q2) ,

conditions which are clearly incompatible.

On the other hand, a nonlocal solution of the anomaly conditions (3.20) for the imag-

inary part of the polarization operator is given by Π̃−
12 = c(q22 − q21)/(q

2
1 + q22). This is, in

fact, the continuum value of the non-transverse part of the polarization operator for an

anomalous theory, see eqs. (3.23), (3.24) below. A local solution of (3.20) can be found only

if Π12 6= Π21, i.e. only if there is a singularity near Aµ = 0 such that the second derivatives

of Z− do not commute; this, however, goes against local smoothness of the measure current.

Thus, our conclusion is that local smoothness combined with the nonvanishing anomaly of

the light fermion (3.17) imply that the imaginary part of the “mirror” Π−
µν should have a

nonlocal part. Eq. (3.19), which leads to this conclusion is a mathematical consequence of

the gauge invariance of the 1-0 model partition function and the freedom to choose locally

smooth γ̂5 eigenvectors.

We now enumerate the possible solutions of (3.19). First, note that in Euclidean

space the anomaly appears in the imaginary part of the polarization operator and this

remains true on the lattice, for arbitrary chiral theories formulated with GW fermions (see

appendices A, D). Next, it is well-known from the continuum that in a unitary Lorentz
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(Euclidean) invariant theory the zero-momentum singularity in the solution of (3.19) is

due to either a massless Goldstone boson or a massless fermion [50, 51]. The massless

scalar or fermion will, of course, also give a nonlocal contribution to the real part of

the polarization operator, in addition to the nonlocal contribution to the imaginary part

required by the anomaly. On the other hand, if our complex Euclidean partition function

had no Hamiltonian interpretation, i.e. led to a non-unitary long distance theory, one could

imagine that the imaginary part has a nonlocal contribution while the real part does not.

Our strategy to look for massless charged mirror modes will be to study both the real

and imaginary parts of the polarization operator of the mirror theory. We already know

that its imaginary part has a nonlocal contribution giving rise to (3.19). The real part of

the polarization operator probes the number and nature of the massless charged degrees

of freedom and thus gives information of the spectrum. In particular, in two dimensions,

massless (Green-Schwarz) scalar or fermion loops lead to q2 = 0 poles in the real part of the

polarization operator, see (3.23), (3.24). It is this part of the mirror polarization operator

that will be of most interest to us.

To recall how this plays out in the continuum and see what we might expect from our

simulations, consider first the example of a Green-Schwarz scalar theory with Euclidean

partition function:

ZGS[A] =

∫

Dη e
R

d2x(−κ
2
(∂µη−Aµ)2+i η

2π
F12) , (3.22)

such that the partition function is not invariant under gauge transformations. The nor-

malization of the kinetic term is chosen such that it is the naive continuum limit of Sκ
of (2.2), with φ = eiη; note that perturbation theory is good when κ ≫ 1. We define the

gauge boson polarization operator as in (3.5), and explicitly compute its Fourier transform

from (3.22), with the result:

Π̃µν
GS

∣

∣

A=0
(q) =

(

κ+
1

4π2κ

)(

qµqν

q2
− δµν

)

− i

2π

ǫνρqρq
µ + ǫµρqρq

ν

q2
. (3.23)

The polarization operator is not transverse and its divergence is iqµΠ̃
µν
GS

∣

∣

A=0
(q) = 1

2π ǫ
νρqρ,

in accordance with (3.19). The nonlocal imaginary part of (3.23) is precisely equal to the

solution found in the paragraph below eq. (3.21). The real part of (3.23) is the contribution

of the massless scalar to the gauge field effective action; notice the shift of the coefficient

κ → κ + 1
4π2κ

due to the anomalous Green-Schwarz term. If our mirror theory has a

massless Green-Schwarz scalar, it would have to manifest itself by contributing to both the

real and imaginary parts of the mirror polarization operator, as in (3.23). In fact, we will

find (not unexpectedly) that at large κ≫ 1, i.e. in the “broken” phase of the unitary Higgs

mirror theory, this solution of anomaly matching is realized.

A massless mirror charged chiral fermion would, similarly,16 also contribute to both

16The regularization ambiguities discussed in [39] do not arise here, since (3.24) is the small-momentum

limit of the contribution of a free chiral GW fermion to the basis-vector independent part of the polarization

operator, see appendices A, B, D. It should be clear that we do not claim that (3.24) represents the

polarization operator of a consistent unitary anomalous theory ((3.24) would correspond to the singular

a = 1 case of [39]). Instead, eq. (3.24) is exactly what a massless mirror at y = 0 would contribute to the

full polarization operator of the vectorlike theory.
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the real and imaginary parts of Πµν :

Π̃µν
chiral

∣

∣

A=0
(q) =

1

2π

(

qµqν

q2
− δµν

)

− i

2π

ǫνρqρq
µ + ǫµρqρq

ν

q2
, (3.24)

where the real part of Π̃µν(q) of the chiral fermion is equal to one-half that of the Dirac

fermion in the Schwinger model. Note that, as opposed to the Green-Schwarz scalar (3.23),

the coefficients of the real and imaginary parts of the massless chiral fermion Π̃µν are the

same — their ratio is 1 vs. ≃ 2πκ for the scalar when κ ≫ 1. Again, running ahead, we

will find strong evidence that in the disordered phase at κ < κc the mirror spectrum obeys

anomaly matching via massless chiral fermions.

In our further study, we will compare our Monte Carlo results for the mirror ReΠµν with

the lattice analogues of eqs. (3.23) and (3.24), which we can easily compute at finite volume

and lattice spacing for a free charged unitary scalar and a GW fermion, respectively. We

will see that this comparison can already be made on an 8×8 lattice, providing compelling

evidence of what mode the mirror theory chooses to obey the ’t Hooft conditions.

3.4 Exact properties of chiral polarization operators

We now list some exact properties of polarization operators that hold for general chiral

theories, in particular for our mirror theory. These properties are derived in appendix A.

All equations below refer to the polarization operator in x-space and not to their Fourier

transforms; recall that we absorb the space-time indices into µ, ν (see (3.15)).

The definition of Π−
µν = δµδν logZ−, see (3.5), (3.6), (3.7), implies that Π−

µν is sym-

metric due to local smoothness of Z−. Furthermore, Π−
µν can be decomposed into a part

that is the measure current derivative and the rest, see (4.7) and (4.10):

Π−
µν = δνj

w
µ + Π− ′

µν . (3.25)

As shown in appendix A, Π− ′
µν is always a total derivative:

Π− ′
µν = δνΠ

− ′
µ . (3.26)

and, in addition, Π− ′
µ is exactly gauge invariant. Therefore, proceeding as in the derivation

of eqs. (3.12), (3.14), we find:

∇∗
νΠ

− ′
µν = 0 , (3.27)

while with respect to the first index, we have from (A.16) in appendix A:

∇∗
µΠ

− ′
µν =

i

2
δνtrγ̂

5
xx. (3.28)

Now, the total mirror Π−
µν is symmetric, but δνj

w
µ and Π− ′

µν are separately not, but obey:

(

Π− ′
µν − Π− ′

νµ

)

= −δνjwµ + δµj
w
ν = Fµν , (3.29)

where Fµν is the curvature of the measure current, explicitly given in appendix A, which is

a known local functional of the gauge field whose divergence ∇∗
µFµν gives half the anomaly.
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These results imply that the symmetric and antisymmetric parts of Π− ′
µν each contribute

half of the anomalous divergence (3.28) (or (3.19)).

In our numerical simulation we calculate Π− ′
µν , as the measure-current part is exactly

the opposite that of the light theory. Since all properties listed in this section hold in-

dependently of the mirror action, in particular of the strength of the mirror couplings,

the verification of (3.27), (3.28), and (3.29), in a numerical simulation at strong mirror

couplings provides an important check on its consistency.

4 Is anomaly matching satisfied? How?

This section serves two main purposes. First, in section 4.1 we describe the analytical work

required to find an expression for the mirror polarization operator in terms of correlation

functions of the mirror theory, to be computed via Monte Carlo simulations. Second, in

section 4.2, we present the results of our simulations.

4.1 Setting up the calculation

To appreciate the technical details of the calculation of the mirror polarization operator,

we begin by noting that if one varies the full theory partition function first, without using

a locally smooth light-mirror split, and then substitutes Aµ = 0 and the corresponding

Aµ = 0 basis vectors to calculate the polarization operator, one finds that the gauge

current involves terms that mix “light” and “mirror” states.

This point is already evident in considering the gauge current in the y = 0 “light” plus

“mirror” theory, which is given simply by (ψ · δµD · ψ). Substituting the expansions (2.7)

of the un-barred spinors in terms of the γ5 eigenvectors u, t (ψ = αi−ti + αi+vi) and of the

barred spinors in terms of the γ̂5 eigenvectors w, u (ψ = αi−w
†
i + αi+u

†
i ), one finds that:

(ψ · δµD · ψ) = αi−α
j
− (w†

i · δµD · tj) + αi+α
j
+ (u†i · δµD · vj)

+ αi−α
j
+ (w†

i · δµD · uj) + αi+α
j
− (u†i · δµD · tj) , (4.1)

i.e. the light-mirror cross terms do not vanish. The α±α∓ cross terms, upon insertion in

a path integral over the fermions ψ,ψ, contribute “light”-“mirror” loops. This fact would

make the calculation of current-current correlators rather difficult, especially in the presence

of interactions (at y 6= 0) treating different chiralities differently. In particular, if a similar

variation was done also in the Yukawa interactions, there would also be “light”-“mirror”

cross terms, making the calculation rather inconvenient, as the “light” contribution is

calculated “by hand” and the mirror — via Monte Carlo simulations.

Using the locally smooth (in the infinitesimal neighborhood of Aµ = 0) basis vectors,

together with the “splitting theorem” of [41], helps achieve a separation of the “light” and

“mirror” contributions to correlation functions which makes the calculation manageable.

The results for the full partition function do not depend on the basis used, and it is a great

convenience to have “light” and “mirror” contributions to current correlators separated.

Our goal is to discuss the correlators in the y = ∞ mirror theory that contribute to Π−
µν .
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We use the results of [41] to simplify the calculation. However, we start with a simple

example — the calculation of the mirror polarization operator at y=0 — to illustrate the

essential technical points.

4.1.1 Warm-up: mirror polarization operator at y = 0

This warm-up gives a better idea how the “splitting theorem” can be used. In the end,

of course, adding the “light” theory piece just reproduces the polarization operator of the

massless vectorlike theory at y = 0 (in a somewhat “twisted” left-right separated way, to

be useful later).

The y = 0 “mirror” partition function — ignoring the neutral mirror, since it will not

contribute to the polarization operator when y = 0 — is:

Z− =

∫

dα−dα−e
−S , (4.2)

S = −αi−αj−(w†
i · P̂+ ·D · tj)

and its first variation wrt Aµ(x) (below, we use d2α− to denote
∏

i dα
i
−dα

i
−) is:

δµZ− =

∫

d2α− αi−α
j
−(δµw

†
i · P̂+ ·D · tj)e−S (4.3)

+

∫

d2α− αi−α
j
−(w†

i · P̂+ · δµD · tj)e−S

+

∫

d2α− αi−α
j
−(w†

i · δµP̂+ ·D · tj)e−S .

The first line above equals Z−
∑

i(δµw
†
i · wi) = Z−Jwµ by the splitting theorem (2.13).

We note that the second line in (4.3) represents a different chiral partition function

(as, by the criterion of [41], it is a partition function whose variation wrt w† is orthogonal

to u†) and the splitting theorem can be used while calculating the second variation of this

term. Finally, the third line in (4.3) vanishes, because D · tj = D · P−tj = P̂+ · D · tj,
combined with δµγ̂5 · γ̂5 = −γ̂5 · δµγ̂5, implies that after P̂+ is pushed through δµP̂+ it

becomes P̂− and annihilates w†. We then have from the above comments:

δµZ− = Z−j
w
µ (4.4)

+

∫

d2α− αi−α
j
− (w†

i · P̂+ · δµD · tj)e−S .

Next, we calculate the second variation. A very important technical point is that the

splitting theorem can be applied iff the variation of the partition function due to the change

of the basis vector is orthogonal to the opposite chirality basis vector. This is the reason we

keep the factor of P̂+ in the second line in (4.4) even though it might appear as a tautology

here; the price to pay is that we have to account for the projector’s variation when we
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calculate the second variation of Z−, as we will see below. Thus we find:

δµδνZ− = δνZ− × jwµ

+ Z− × δνj
w
µ

+ Jwν ×
∫

d2α αi−α
j
−(w†

i · δµD · tj)e−S (4.5)

+

∫

d2α αi−α
j
−(w†

i · δµD · tj) αp−αq−(w†
p · δνD · tq) e−S

+

∫

d2α αi−α
j
−(w†

i · δνP̂+ · δµD · tj)e−S

+

∫

d2α αi−α
j
−(w†

i · δνδµD · tj)e−S .

We used the splitting theorem on the third line above, wrt the chiral partition function

given by the second line in (4.4). Armed with (4.4) and (4.5) we can now compute the

y = 0 “mirror” theory polarization operator, defined by (3.5) with Z → Z−:

Π−
νµ = δνj

w
µ

+ 〈αi−αj−〉
(

(w†
i · δνδµD · tj) + (w†

i · δν P̂+ · δµD · tj)
)

(4.6)

+
(

〈αi−αj−αp−αq−〉 − 〈αi−αj−〉〈αp−αq−〉
)

(w†
i · δµD · tj)(w†

p · δνD · tq) ,

where brackets “〈 · 〉” denote expectation values calculated with the mirror partition func-

tion. It is immediately seen (by recalling [41]), using 〈αiαj〉 = ||(w†
k · D · tl)−1||ij =

(t†i ·D−1 · wj), that the polarization operator of the mirror can be written as:

Π−
µν = δνj

w
µ + Tr(δµδνD · P− ·D−1 · P̂+) + Tr(δν P̂+ · δµD · P− ·D−1 · P̂+) (4.7)

− Tr(δµD · P− ·D−1 · P̂+ · δνD · P− ·D−1 · P̂+) .

Many of the projectors above can be dropped due to the Ginsparg-Wilson relation, but

were left in for comparison with (4.6).

Now, it is straightforward to compute Π−
µν directly from the expression for the y = 0

charged-mirror partition function Z− = det ||(w†
i · D · tj)|| and see complete agreement

with (4.7); we leave this as an exercise for the reader. The calculation in this section was

done in such detail in order to see the agreement with the much faster direct calculation

alluded to above and to emphasize that the term with the variation of the projector in (4.7)

is crucial for this agreement — this projector was inserted to allow use of the splitting

theorem when performing the second variation of the mirror partition function.

Of course, for the case of interest y 6= 0, we do not have an expression for Z− as simple

as det ||(w†
i · D · tj)||, so the best we can hope for is to cast the mirror Π−

µν into a form

similar to (4.6), which will give the mirror polarization operator in terms of mirror theory

correlation functions. These can be computed via a Monte Carlo simulation at zero gauge

background, by first computing explicitly the various functions of position and momentum

appearing in (4.6), such as (w†
i · δνP̂+ · δµD · tj), and then using the existing code of [38].
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4.1.2 Mirror polarization operator at y 6= 0

The 1-0 model action is given in (2.1). Substituting (2.9) into the mirror action, we find

the terms in the mirror action that depend on the gauge field:

Smirror = − αi−α
j
− (w†

i [A] ·D[A] · tj) + y αi−β
j
+ (w†

i [A] · P̂+[A] · φ∗vj)
− yh β

j
+α

i
− (u†jγ2 · φ∗ · P̂ T+ [A] · w∗

i [A]) + Sκ[A] (4.8)

+ Aµ − independent ,

where Sκ is the kinetic action for φ. The mirror partition function is defined in (2.12). For

the first variation of lnZ−[A] we find (brackets 〈 · 〉 now denote expectation values with the

full mirror partition function (2.12)):

δµ lnZ− = jwµ

+ 〈 αi−αj− (w†
i · P̂+ · δµD · tj)〉

+
κ

2
〈 (φ∗ · δµU · φ) + h.c. 〉 (4.9)

− y 〈 αi−βj+ (w†
i · P̂+ · δµP̂+ · φ∗vj)〉

− yh 〈αi−β
j
+ (u†jγ2 · φ∗ · δµP̂ T+ · P̂ T+ · w∗

i ) ,

where the first two lines on the r.h.s. appear just as in (4.4). Now we have to perform

a second variation, carefully use the splitting theorem several times, and finally compute

Π−
µν = δνδµ lnZ−[A]

∣

∣

A=0
, watching for the many cancellations. This calculation straight-

forwardly follows the already established rules and after some tedious algebra we obtain

the mirror polarization operator:

Π−
µν = δνj

w
µ

+ 〈αi−αj−〉 (w†
i · (δµδνD + δνP̂+δµD) · tj)

+ 〈αi−αj−αk−αl−〉C (w†
i · δµD · tj)(w†

k · δνD · tl)
+
κ

2
〈(φ∗ · δνδµU · φ) + h.c.〉

+
κ2

4
〈[(φ∗ · δµU · φ) + h.c.] [(φ∗ · δνU · φ) + h.c.]〉C

+
κ

2

[

〈αi−αj−((φ∗ · δνU · φ) + h.c.)〉C(w†
i · δµD · tj) + (µ↔ ν)

]

− y 〈αi−βj+ (w†
i · δν(P̂+δµP̂+) · φ∗vj)〉 (4.10)

− yh 〈αi−β
j
+ (u†jγ2 · φ∗ · δν(δµP̂ T+ · P̂ T+ ) · w∗

i )〉

− y
[

(w†
i · δµD · tj)〈αi−αj−αk−

(

βl+(w†
k · δνP̂+ · φ∗vl) + h β

l
+(u†l γ2 · φ∗ · δνP̂ T+ · w∗

k)〉C
)

+ (µ ↔ ν)]

+ y2 〈
(

αi−β
j
+(w†

i · δµP̂+ · φ∗vj) + hαi−β
j
+(u†jγ2 · φ∗ · δµP̂ T+ · w∗

i )
)

×
(

αk−β
l
+(w†

k · δνP̂+ · φ∗vl) + hαk−β
l
+(u†l γ2 · φ∗ · δν P̂ T+ · w∗

k)
)

〉C

− yκ

2

[

〈[(φ∗ · δµU · φ) + h.c.]
[

αi−β
j
+(w†

i · δνP̂+ · φ∗vj) + hαi−β
j
+(u†jγ2 · φ∗ · δν P̂ T+ · w∗

i )
]

〉C

+ (µ ↔ ν)] ,
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with 〈. . .〉C indicating the connected part. The first three lines are identical to (4.6).

The form of the mirror polarization operator (4.10) simplifies somewhat in the y = ∞
limit of our simulation when many terms vanish. At infinite Yukawa, the mirror theory

conserves the number of + fermions minus the number of − fermions, implying that all

correlators with an unequal number of + and − fermions vanish as y → ∞. Therefore, we

have a simpler expression for the mirror polarization operator (4.10), which we write as a

sum of several terms:

Π−
µν

∣

∣

y→∞ = δνj
w
µ + Π′

µν , Π′
µν ≡ Πy

µν + Πκy
µν + Πκ

µν , (4.11)

where the fermion current-fermion current contribution Πy
µν is:

Πy
µν = − y 〈αi−βj+ (w†

i · δν(P̂+δµP̂+) · φ∗vj)〉 − yh 〈αi−β
j
+ (u†jγ2 · φ∗ · δν(δµP̂ T+ · P̂ T+ ) · w∗

i )〉

+ y2 〈
(

αi−β
j
+(w†

i · δµP̂+ · φ∗vj) + hαi−β
j
+(u†jγ2 · φ∗ · δµP̂ T+ · w∗

i )
)

×
(

αk−β
l
+(w†

k · δν P̂+ · φ∗vl) + hαk−β
l
+(u†l γ2 · φ∗ · δν P̂ T+ · w∗

k)
)

〉C , (4.12)

the scalar current-scalar current contribution Πκ
µν is:

Πκ
µν =

κ

2
〈(φ∗ · δνδµU · φ) + h.c.〉

+
κ2

4
〈[(φ∗ · δµU · φ) + h.c.] [(φ∗ · δνU · φ) + h.c.]〉C , (4.13)

and, finally, the mixed fermion current-scalar current contribution Πyκ
µν is:

Πyκ
µν =

−yκ
2

{

〈[(φ∗ · δµU · φ) + h.c.]
[

αi−β
j
+(w†

i · δνP̂+ · φ∗vj) + hαi−β
j
+(u†jγ2 · φ∗ · δν P̂ T+ · w∗

i )
]

〉C

+ (µ ↔ ν)} . (4.14)

It should be clear that many factors (i.e. basis vectors w†, u†, v and operators P̂+) can

be taken out of the correlators as they do not depend on the integration variables (α−,

α−, β+, β+, φ) but are simply functions of momenta; we do not explicitly do this here for

brevity.

A few comments are now in order. The measure current contribution exactly cancels

the similar contribution of the light sector, the first term in (3.17), and, as stated many

times, all the “action” is in the other terms. Consider first the terms independent on κ. The

correlators that enter Πy
µν (4.12) scale as 1/y and 1/y2, respectively, so their contributions

to Π−
µν are y-independent. As for the h-dependence of the large-y limit of Π−

µν , we only

know for sure that h should drop out of the divergence of the polarization operator (it is

difficult to see how this can be proved starting from the explicit expression of the mirror

polarization operator, but it must be true, as a consequence of the gauge invariance of the

full “light”+“mirror” partition function and the local smoothness of the split). Finally, we

expect that the terms proportional to κ, Πκ
µν and Πyκ

µν vanish in the κ → 0 limit: it is not

clear how a 1/κ singularity in the scalar Green’s functions could come about if there is
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Figure 1. The real parts of Π̃11 (left plot) and Π̃12 (right plot), the Fourier components of the

real part of the basis-vector independent part of polarization operator of a free chiral GW fermion

on an 82 lattice, as a function of momentum. The k-dependence is plotted along three lines in

momentum space — the circles and horizontal squares correspond to lines approaching the origin

at 00 (k2 = 0) and 450 (k1 = k2 = k) wrt x-axis, respectively, while the tilted squares are taken

on a line with k1 = 0 (at 900). Clearly, the discontinuity at small k (i.e., at k = 7 and k = 1) is

as predicted by the continuum expression — for example, the value of 2C read off Π̃11(900) agrees

well with the continuum expression. We note that in these plots (generated by Mathematica),

momenta are labeled by 1 . . . 8 instead of 0 . . . 7 as in the plots presenting the Monte-Carlo results;

an identification 0 = 8 should be made for comparison.

indeed a disordered phase in this limit (as per the results of [38]); we numerically test the

κ→ 0 behavior of Πκ
µν + Πyκ

µν in section 4.2.5 and confirm this expectation.

In our numerical simulation, we compute Π′
µν of eq. (4.11) and look for non-local

terms in its real part. Before stating the results of the simulations in the next section, we

note that in order to compute the scalar and fermion correlators in (4.11), one needs to

choose a representation of γ-matrices, a basis of γ̂5-eigenvectors, work out the perturbative

expansion of the Neuberger-Dirac operator to second order in the gauge field, and finally,

express the correlators (4.12–4.14) in terms of these quantities. We give our notation and

conventions in appendices B and C in sufficient detail to complete this straightforward but

tedious calculation.

4.2 Monte Carlo results for the mirror polarization operator at strong cou-

pling

In the continuum, the contribution to the Fourier transform of the real part of the polar-

ization operator due to massless particles is:

Π̃µν(k) = 2C
δµνk

2 − kµkν
k2

, 2CGS scalar ≃ −κ, 2Cch.ferm. ≃ − 1

2π
≃ −0.159, (4.15)

where the constant C depends on the number of massless degrees of freedom and the

normalization is chosen for later convenience. The values of C given are for a single Green-

Schwarz scalar and a single chiral fermion, inferred by comparison with (3.24) and (3.23).
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The polarization operator (4.15) has a directional singularity as k → 0:

Π̃11(φ)
∣

∣

k→0
= C(1 − cos 2φ)

Π̃21(φ)
∣

∣

k→0
= −C sin 2φ , (4.16)

where φ is the angle of approach to the origin measured from the positive-k1 axis. Thus,

from (4.16) we expect that on the lattice, if there are massless particles, the following

relations will hold as k → 0:

Π̃11(45
0) = −Π̃21(45

0) = C ,

Π̃11(90
0) = 2C , (4.17)

Π̃11( 00) = Π̃21(0
0) = Π̃21(90

0) = 0 .

To test the relations (4.17) on the lattice, we begin by first computing the real part of

the polarization operator of free massless GW fermions, which is simply equal to 1/2 the

Dirac GW fermion polarization operator and the analytical expression for which is given

in (A.5) of appendix A. On figure 1, we plot the real part of the Fourier transform of the real

part17 of Π′
µν for a free chiral GW fermion (A.5); the Fourier transform is precisely defined

in D.2. In order to make the calculation of (A.5) well-defined, we imposed antiperiodic

boundary conditions on the fermions, which results in a well-defined value at k = 0, but

does not remove the directional singularity as k → 0.

It is clear from figure 1 that the polarization operator approaches different limits as

one approaches the origin at different angles. The discontinuity at small momenta is clearly

visible already on the rather small lattice used. The results agree well with the expectation

of eq. (4.17). The value of C inferred from k = 1 on an 82 lattice does approximately

match the one of the continuum result for a chiral fermion, given in (4.15); a rather precise

numerical agreement can be seen on somewhat larger lattices (e.g., virtually identical on

322), however, we only plot the 82 result since this is the lattice size of our numerical

simulation.

If one performs a similar calculation for a massive fermion, the k → 0 discontinuity

disappears, in accord with the expectation that a massive-particle loop contributes Πµν ∼
m−2(δµνk

2 − kµkν).

In what follows, we will compare the results for Π̃11 and Π̃21 for the free chiral GW

fermion with the results of the Monte Carlo simulation of the same components of the

mirror polarization operator. While in the text we refer to 11 and 12 components of

the polarization operator, in the figures and the captions, the replacement Π̃11 → Π̃00,

Π̃21 → Π̃10, will be used.

4.2.1 A few words about the simulation

All our simulations are on an 8 × 8 lattice. The reason we only consider such a small

lattice is that the computation of Πµν is rather demanding, because of the large number of

17This cumbersome expression is, unfortunately, unavoidable: real and imaginary parts of Π′
µν are defined

in x-space, but then the finite lattice Fourier transform (D.2) of ReΠ′
µν has both a real and imaginary part

and becomes real only in the continuum limit.
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momentum sums that occur in the correlators, most notably in the fermion-fermion current-

current correlator of eq. (4.11). Nevertheless, when combined with the analytic results of

the previous sections and the appendices, even this rather small lattice is sufficient for a

qualitative study of the mirror spectrum and in particular, an identification of the massless

mirror states.

The code used to generate configurations was developed by J. Giedt for the study of [38]

and uses the cluster algorithm to generate XY -model configurations with a reweighting of

the fermion determinant. The fermion measure is taken into account through determinant

reweighting:

〈O〉 =
〈O detM〉η
〈detM〉η

. (4.18)

Here, O is any observable, and 〈· · ·〉η denotes an expectation value with respect to the

measure of the XY model (cf. eq. (2.2) with U ≡ 1),

dµ(η) = Z−1
XY

(

∏

x

dηx

)

exp(−Sκ). (4.19)

We monitor the reliability of this method in several ways. We measure the autocorrelation

time for reweighted quantities 〈O detM〉η, as well as 〈detM〉η, to be certain that the con-

figurations remain independent with respect to the new measure. We perform a jackknife

error analysis of the averages 〈O〉 that are obtained, gathering sufficient data to keep errors

small.

An additional package was developed by one of us (Y.S.) so that the original code was

adapted to work on the Sunnyvale computer cluster at CITA, where the momentum sums

over different configurations were performed with hundreds of processors in parallel. In

order to reduce the statistical errors, 16000 independent configurations were generated and

used in the calculation of the averages.

4.2.2 Strong-coupling symmetric phase (h > 1, κ ≪ κc): massless chiral fermion

We now compare figure 1 to the numerical simulation of Π′
µν of the mirror theory, an

expression for which in terms of mirror correlation functions is given in (4.11). On figures 2

and 3 we show the same components of the polarization operator as on figure 1 for κ = 0.1

and h = 2, 5, respectively. On figures 4 and 5 we show the results for κ = 0.5 and h = 2, 5,

respectively. In all cases, measurements of the susceptibilities [38] indicated that the theory

is in the strong coupling symmetric phase.

Thus, we observe that for κ < 1 and h > 1, i.e. in the strong-coupling symmetric

phase found in [38], the polarization operator of the mirror theory is qualitatively and

quantitatively close to the one in the free GW-theory of figure 1. The discontinuity at

small-k is as expected from the continuum formula for the real part of a chiral fermion

polarization operator and the actual numerical values of ReΠµν are also close to the ones

for the free fermion (for example, the values of 2C inferred from Π̃11(90
0), see (4.17), are

closer to the continuum value for κ = 0.1, deeper in the symmetric phase, than for κ = 0.5).
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Figure 2. The real parts of Π00 and Π10 of the mirror for κ = 0.1, h = 2, as a function of momentum

approaching the origin in different directions: symmetric phase, massless fermion (compare with

figure 1.).

Figure 3. The real parts of Π00 and Π10 of the mirror for κ = 0.1, h = 5: symmetric phase,

massless fermion (compare with figure 1.).

Figure 4. The real parts of Π00 and Π10 of the mirror for κ = 0.5, h = 2: symmetric phase,

massless fermion (compare with figure 1.).
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Figure 5. The real parts of Π00 and Π10 of the mirror for κ = 0.5, h = 5: symmetric phase,

massless fermion (compare with figure 1.).

Figure 6. The real parts of Π00 and Π10 of the mirror for κ = 5, h = 2: broken phase, massless

scalar.

The real part shows slight variations with h, as the plots for h = 2 and h = 5 show, as

well as with κ (when κ < 1), as the plots for κ = 0.5 and κ = 0.1 show. In each case, the

ratio of Π̃11(90
0)/Π̃11(45

0) ≃ 2.5, are in agreement with the ratio for free GW fermions of

figure 1 and somewhat larger than the continuum ratio of 2.

In every case, the divergence of the imaginary part, as well as eqs. (3.27), and (3.29),

were numerically checked to be obeyed by Π′
µν up to the errors of the simulation. We

conclude that in this phase the mirror theory satisfies ’t Hooft anomaly matching in the

massless chiral fermion mode.

4.2.3 “Broken” phase (h > 1, κ≫ κc): Green-Schwarz scalar

The results for the mirror polarization operator in the broken phase are shown on figure 6,

for κ = 5, h = 2. Taking κ ≫ 1 takes the unitary Higgs field into an algebraically ordered

(“broken”) phase. The studies of [38] showed that the results of simulations in this phase

agree very well with perturbation theory (a 1
κ expansion). This continues to be the case here

— note that the values of Πµν at small momenta scale with κ, in contrast to the symmetric
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Figure 7. The real parts of Π00 and Π10 of the mirror for κ = 0.5, h = 0.01: symmetric phase,

three massless chiral fermions, see section 5; the dip at k = 4 is due to an “Umklapp” process (an

analytic calculation using the mirror partition function det+(2 − D) gives a very similar result).

κ < 1 phases, see eq. (3.23). From Π̃11(90
0) we infer 2C ≃ −5, in good agreement with the

value for κ = 5 of eq. (4.15). Thus, we conclude that the discontinuity of Π′
µν on figure 6

in the “broken” phase is due to a massless scalar.

4.2.4 Strong-coupling symmetric phase (h → 0, κ ≪ κc): massless chiral

fermion and massless vectorlike pair

At h = 0, in section 5, we give analytical arguments that the massless spectrum should

contain three charged massless chiral fermions (two of them forming a vectorlike pair and

thus not contributing to the anomaly). This is borne out by the simulations done in the

h → 0 limit. For example, the value of |2C| inferred from the plot on figure 7 of Π̃11(90
0)

is roughly .39, while that inferred from Π̃12(45
0) it is .44 (closer to the continuum value

of 3/(2π) ≃ .48). A calculation (which for brevity we do not show) of the polarization

operator of the mirror partition function det+(2−D), see eq. (5.6) in section 5, also shows

good agreement with the h→ 0 Monte Carlo data shown on figure 7.

4.2.5 Scaling of the different contributions to Πµν as κ→ 0

Finally, on figure 8 we show the κ-scaling of the κ-dependent terms in Πµν of the mirror

theory (i.e. deep into the symmetric phase). More precisely, we show the 0-90 degree split

of the sum of the Πκ
00 (4.13) and Πyκ

00 (4.14) at small momenta as a function of κ. It is clear

that the contribution of the κ-dependent terms scales to zero with κ, showing that in the

symmetric phase contributions to the angular discontinuity of polarization operator come

from the Yukawa terms, Πy,y2 of eq. (4.11).

5 Attempt at (some) analytic understanding

In this section, we will attempt to get a somewhat better analytic understanding of the

numerical results of the previous sections. To this end, we will develop a different rep-

resentation of the 1-0 model partition function. We begin by noting that the 1-0 model
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Figure 8. The small-κ scaling of (Πκ

11 + Πyκ

11
)
∣

∣

90
0

00
of the κ-dependent terms’ contribution to the

discontinuity of the mirror polarization operator at small momentum.

action (2.1) can be written in unprojected components (the superscripts P̂ 1(0) in the hatted

projectors indicate whether the charge-1 or charge-0 Dirac operator has to be used):

Skinetic = −
(

ψD1ψ
)

− (χD0χ)

SYukawa =

y
{(

ψP̂ 1
+φ

∗P+χ
)

+
(

χP̂ 0
−φP−ψ

)

+ h
[

(

ψT (P−)Tφγ2P+χ
)

−
(

χP̂ 0
−γ2φ

∗(P̂ 1
+)Tψ

T
)]}

,

where the measure now is the usual vectorlike theory measure in terms of ψ,ψ, χ, χ:

Z =

∫

dψdψdχdχdφ e−Skinetic−SYukawa−Sκ , (5.1)

and Sκ is defined in (2.2). We now perform the field redefinition:

ψ → ψ, ψ → ψ
1

2 −D1
,

χ→ χ, χ→ χ
1

2 −D0
. (5.2)

The motivation for this redefinition can be traced back to the GW relation, which implies

that:
1

2 −D
γ̂5 = γ5

1

2 −D
, (5.3)
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in other words, a γ̂5 action on the original ψ is transformed into the action of γ5 on the

new fields in (5.2). The price to pay for having an action of the lattice chiral symmetries

generated by γ5, exactly as in the continuum, is the nonlocality of the redefinition (5.2)

and thus of the resulting action (see (5.4) below).

Since we work perturbatively in the gauge field and at finite volume, we will imagine

throughout this section that the singularity at D = 2 of (5.2) is avoided by turning on

background Wilson lines. The effect of the field redefinition on the partition function is:

Z =

∫

dψdψdχdχdφ det(2 −D1) det(2 −D0) e
−S′

kinetic−S′
Yukawa−Sκ ,

S′
kinetic = −

(

ψ
D1

2 −D1
ψ

)

−
(

χ
D0

2 −D0
χ

)

, (5.4)

S′
Yukawa =

y

2

(

ψφ∗P+χ
)

+
y

2
(χφP−ψ)

+ yh

[

(

ψTφγ2P+χ
)

− 1

4

(

χP−γ2φ
∗ψ

T
)

− 1

4

(

χP−
D0

2 −D0
γ2φ

∗(
D1

2 −D1
)TP+ψ

T
)]

.

Obtaining the transformed Yukawa couplings in S′
Yukawa requires repeated use of the GW

relation and the equivalent relation (5.3). Needless to say, similar redefinitions hold in four

dimensions and can be straightforwardly performed if necessary.

Several comments, concerning the representation (5.4) of the mirror partition function,

are now in order. We hope that these comments are useful to clarify the relation between

different formulations of exact lattice chirality:

• The singularity of the action at the position of the doublers, D = 2, ensures that they

have infinite action and do not propagate at the classical level, as first proposed by

Rebbi [52]. The problem with [52], pointed out in [53, 54], of the doublers contribut-

ing as ghosts to the photon polarization operator at the quantum level is solved by

the determinant prefactors, which exactly cancel the would-be ghost/doubler contri-

butions.

• Another comment concerns the relation of (5.4), with y = h = 0, to domain wall

fermions. In the 2d case, these propagate on a finite interval in three dimensions.

The generating functional of Green’s functions of the boundary chiral modes — in

the case at hand, one charged and one neutral — can be obtained by integrating out

the bulk fermions. This is technically possible since the fermion action is bilinear

and there is no gauge field propagation in the extra dimension (or any other non-

uniformity except at the boundaries). When taking the chirally-symmetric limit of

an infinite number of sites in the extra dimension, a massive bulk Pauli-Villars field,

antiperiodic in the extra dimension, has to be included in order to obtain a finite

determinant. The generating functional of Green’s function for the boundary chiral

modes can be represented as a partition function with source terms. The result

is exactly (5.4), with y = h = 0, and with source terms for ψ and χ included. The

determinant prefactors in (5.4) arise as a combination of the determinants of the bulk

fermions and the Pauli-Villars fields. The derivation of these results can be extracted
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from the work of ref. [56] (a less rigorous but nonetheless enlightening continuum

discussion of the properties of the kinetic operator for the boundary modes is given

in [57]).

• For vanishing Majorana coupling, h = 0, the Yukawa interaction in (5.4) is equivalent

to the chirally invariant Yukawa coupling of ref. [44], see also [58]. To see this, use

(ψ D
2−Dψ) = 1

2(ψDψ) + 1
2(ψD D

2−Dψ) to replace the ψ kinetic term in the action S′
kin.

Then note that −1
2(ψD D

2−Dψ) = (ξ(2 − D)ξ) + 1√
2
(ξDψ) + 1√

2
(ψDξ), where it is

understood that the new charged field ξ is integrated out from the action using its

equation of motion, while the ξ-determinant exactly cancels the one in (5.4). Then,

shift the integration variable ψ → ψ+
√

2ξ. Next, perform exactly the same operations

on χ, introducing a neutral field η, to finally obtain the action in the original form

of Lüscher, suitably adapted to the 2d case and to our normalization:

S = −1

2
(ψD1ψ+χD0χ)+2ξξ+2ηη+

y

2
(ψ+

√
2ξ)φ∗P+(χ+

√
2η)+

y

2
(χ+

√
2η)φP−(ψ+

√
2ξ),

(5.5)

where the measure is the trivial one over ψ,χ, η, ξ. The Yukawa interaction of (2.1)

is thus equivalent to that of [44]. We note that gauge and chiral invariant Majorana

couplings were not considered in [44] and to the best of our knowledge were first

constructed in [38].

We can now use the representation (5.4) to split the partition function exactly as

we did in the basis of GW fermions. The representation of the split partition function

that we give below is, in fact, equivalent to that in (2.11). The splitting of the ψ-χ

partition function (5.4) into a “light” and “mirror” part is now done trivially using the γ5-

eigenvectors, which have no gauge-field dependence. We obtain, denoting now by ψ±, χ±
the “normal” γ5-chirality components of the 2-component ψ,χ, and using the fact that

S′
Yukawa only depends on the mirror components of ψ,χ:

Z = Z+ × Z− × 1

J
,

Z+ = det−(2 −D0)det+(2 −D1)

∫

dψ+dψ+dχ−dχ−e
−

“

ψ+
D1

2−D1
ψ+

”

−
“

χ−
D0

2−D0
χ−

”

, (5.6)

Z− =

det+(2 −D0)det−(2 −D1)

∫

dψ−dψ−dχ+dχ+dφe
−

“

ψ−
D1

2−D1
ψ−

”

−
“

χ+
D0

2−D0
χ+

”

−S′
Yukawa−Sκ .

Splitting the determinant prefactor into “light” and “mirror,” as indicated in (5.6), requires

using the gauge-field dependent eigenvectors of γ̂5:

det+(2 −D) = det+(1 + γ̂5γ5) = det||(u†i (2 −D)tj)|| = det||2(u†i tj)||, (5.7)

det−(2 −D) = det−(1 + γ̂5γ5) = det||(w†
i (2 −D)vj)|| = det||2(w†

i vj)||,

where the appropriate γ̂5-eigenvectors are to be used for D0 or D1. The gauge variation

of the mirror partition function Z− has now two contributions: one from the variation of
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det−(2−D1) and one from the variation of the path integral over ψ−, χ+, φ. The splitting

theorem, applied to the chiral partition function defined by the latter, can be easily seen

to imply that the gauge variation Z− with the determinant factors left out vanishes. Thus

the entire gauge variation of Z− comes from the determinants:

δ lnZ− = δωlndet||(w†
i (2 −D1)vj)|| =

∑

j

(δωw
†
jwj) + tr P̂+

1

2 −D1
δω(2 −D1)

=
∑

j

(δωw
†
jwj) + iTrω

(

P̂ 1
+ − P+

)

=
∑

j

(δωw
†
jwj) +

i

2
Trωγ̂5, (5.8)

where, as usual, the measure current is cancelled by the variation of the Jacobian and light

partition function. The gauge variation of Z− is, naturally, the same as in (2.15) (the gauge

variation of Z+ can be obtained similarly to (5.8) and be seen to combine, together with

the Jacobian to cancel that of Z−).

The determinant prefactor in Z− contributes both to the real and imaginary parts

of the mirror polarization operator. It is clear from (5.8) above that the imaginary part

of the polarization operator due to the determinant is exactly as required by anomaly

cancellation. Assuming unitarity at long distances, one would argue that ReΠµν should

receive a contribution from at least one massless charged chiral fermion (plus, possibly, a

number of massless states in anomaly-free representations). The goal of our simulation was

to precisely find out the real part of the mirror polarization operator. Let us now compare

the numerical findings with what can be inferred from the representation of the mirror

partition function (5.6), (5.7).

1. The real part of the mirror theory Π−
µν receives two contributions at y = ∞. The first

is due to the determinant prefactor. The contribution to ReΠ−
µν of det−(2 −D1) is

easily seen to be exactly that of three massless propagating charged chiral fermions —

the chiral components of the three 2d doubler modes. This can be easily done using

the formulae from the appendix to calculate the determinant contribution to Πµν ,

then numerically plotting the result and comparing to the long-distance contribution

of a single charged chiral fermion. The determinant prefactor contribution to ReΠ−
µν

is, obviously, the same for any value of y, h.

2. The only other contribution to ReΠ−
µν at y = ∞ arises from the nonlocal coupling in

the Majorana Yukawa term in S′
Yukawa of (5.4). While it appears difficult to calculate

analytically this contribution in the disordered-φ phase, our numerical results for

the mirror polarization operator ReΠµν show that there is one massless propagating

chiral fermion. Thus two of the three massless modes contributed by the prefactor are

cancelled by the nonlocal contribution to ReΠµν from the Majorana term in SYukawa;

it appears that this cancellation is exact for all values of h > 1.

3. For vanishing Majorana coupling, h = 0, on the other hand, both numerical simu-

lations (with the code of [38] used in this paper, we can only approach the h → 0

limit) and analytic arguments using the representation (5.6), to be discussed in more

detail elsewhere, show that the real part of the mirror polarization operator at small
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momenta and infinite y is that of three charged massless chiral fermions. This is not

too surprising as the Majorana coupling goes away in the limit and at infinite y the

only dependence on the gauge field is in the determinant prefactor in Z− of (5.7).

This indicates the crucial role of the Majorana-type couplings (recall that they were

motivated by the need to break all mirror global symmetries) in facilitating the de-

coupling of the maximal possible number (allowed by anomaly matching) of charged

mirror degrees of freedom.

4. Another lesson we learned is that probing the fermion spectrum with local fermion

operators (including charged local fermion-scalar composites, as in [38]) can miss

massless degrees of freedom. The massless charged mirror fermions were not seen in

that study, perhaps because they are not expressed in an obvious local way through

the original variables. The long-distance gauge-boson polarization operator of the

mirror theory is a universal probe of the charged mirror spectrum and should be the

first quantity, along with susceptibilities probing chiral symmetry breaking, computed

in any future studies of anomaly-free models.
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A More fun with chiral polarization operators

Consider first the mirror polarization operator (4.7) at y = 0, which can be written as

Π−
µν = δνj

w
µ + Π′−

µν . The Π′±
µν part of the polarization operator is independent of the basis

vectors and can be expressed (easily verified by looking at (4.7)) as:

Π′±
µν = δνΠ

′±
µ , (A.1)

with:

Π′±
µ = TrP±D

−1δµD =
1

2
TrD−1δµD ± 1

2
Trγ5D

−1δµD . (A.2)

We will denote the two terms in (A.2) as the vector (superscript V ) and axial (superscript

5) parts of Π′
µ:

ΠV
µ ≡ TrD−1∂µD

Π5
µ ≡ Trγ5D

−1∂µD . (A.3)
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We note that ΠV
µ is real, since D† = γ5Dγ5. On the other hand, we easily obtain (using

the GW relation on the way) that:

Re Π5
µ =

1

2
Trγ5δµD

i Im Π5
µ =

1

2
Tr [δµD, γ5]D

−1 . (A.4)

Thus, we can express Π′±
µν (A.1) as follows:

Π′±
µν =

1

2
δνTrD−1δµD ± 1

4
Trγ5δµδνD ± 1

4
δνTr [δµD, γ5]D

−1 (A.5)

A few comments:

1. The first two terms of Π′±
µν are real and symmetric in µ, ν, while the last term is

purely imaginary and has both a symmetric and an antisymmetric part.

2. The first term, 1
2δνTrD−1δµD, in (A.5) is simply 1/2 the vector theory polarization

operator. It is manifestly real and has a nonlocality (a factor of D−1) due to the fact

that a massless particle is propagating in the loop. It is also manifestly transverse

w.r.t. both indices. In the continuum limit it reduces to the transverse Lorentz

invariant contribution (the first term in (3.24)) with a coefficient equal to one-half

that of the massless Schwinger model.

3. The second term, ±1
4Trγ5δµδνD, is manifestly symmetric and is local (with the usual

exponential tail). It is transverse w.r.t. both µ and ν. This term should vanish in the

continuum limit, as there is no symmetric, local, transverse, parity-odd expression

one can write in the continuum. In fact, numerical evaluation of the trace on finite

lattices indicates that this term vanishes identically at A = 0; we have no analytic

proof, but feel that one should exist.

4. The last term, ±1
4δνTr [δµD, γ5]D

−1, is purely imaginary, and has no manifest sym-

metry in µ, ν. We know from general arguments that its antisymmetric part should

equal 1
2Fµν (see also (A.17) below) and thus be local. Its symmetric part, on the

other hand, is nonlocal. The divergences of the symmetric and antisymmetric parts

are equal, each giving rise to one-half the anomalous divergence of Π′±
µν . Once again,

this is easy to also explicitly check from (A.5):

∇∗
µΠ

′±
µν(x, y) = ±1

4
∇∗
µ δνTr [δµD, γ5]D

−1 = ∓ i

2

δ

δAν(y)
tr γ̂5(x, x) . (A.6)

Two questions are to be answered in order to generalize these results to the most general

chiral theories (e.g. to our y 6= 0 mirror). Our object of interest Π− ′
µν is again defined by:

Π−
µν = δνj

w
µ + Π− ′

µν . (A.7)

First, is it true that Π− ′
µν is always a total derivative? Namely, does there always exist a

Π− ′
µ such that:

Π− ′
µν = δνΠ

− ′
µ ?
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Second, if such a Π− ′
µ does exist, is it manifestly gauge invariant?

The answer to the first question is immediately yes if one just looks at the definition

of Π− ′
µν given by equation (A.7) and recalls that both Π−

µν ≡ δµδν logZ− and δνj
w
µ are

total derivatives. In fact, we know precisely what Π− ′
µ is. Given any chiral action, in the

notation of [41]:

S̃[X,Y †, O] ≡ exp(S[X,Y †, O]) ,

and the partition function:

Z ≡
∫

Πdcdc S̃[ciui, civ
†
i , O] , (A.8)

with ui and vi some appropriate eigenvectors, we have proved the “splitting-theorem”:

δµ logZ = jµ +
Z

(1)
µ

Z
, (A.9)

where:

Z(1)
µ ≡

∫

Πdcdc δO,µS̃[ciui, civ
†
i , O]. (A.10)

Here δO,µS̃ represents the variation of S̃ with respect to Aµ with the vectors ui and vi fixed

(namely, the variation of S̃ due to the variations of the operators only). As explained in

section 4.1.1, to make sure δO,µS̃[ciui, civ
†
i , O] is again chiral, one should insert additional

P ’s if needed, and the value of Z
(1)
µ remains intact in this procedure. We will implicitly

assume this rule here. Comparing equation (A.9) with equation (A.7) implies:

Π− ′
µν = δν

(

Z
(1)
− ,µ

Z−

)

. (A.11)

Now, the answer to the second question is also yes provided that S̃ is gauge invariant.

We assume that the action S̃[X,Y †, O] is invariant under the gauge transformation

δX = iωX, δY = iωY, and δO = i[ω , O ]. (A.12)

It is easily verified that δO,µS̃ is also gauge invariant, where all the operators, including

δµO and the additional P ’s inserted, transform as adjoints as well. Therefore both Z and

Z
(1)
µ are partition functions defined by a “chiral” and gauge invariant action. As given by

equation (4.55) in [41], their gauge transformations are completely determined independent

to the actual expressions of the actions. Indeed,

δω logZ = δω logZ(1)
µ = jω − iTrω(P̂ − P ) , (A.13)

where jω is the measure current corresponding to an infinitesimal gauge transformation

with parameter ω. Thus, we find:

δω log
Z

(1)
µ

Z
= δω logZ(1)

µ − δω logZ = 0, (A.14)

which says that log
Z

(1)
µ

Z is gauge invariant, and so is
Z

(1)
µ

Z .
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Finally, we derive the general properties of chiral polarization operators listed in sec-

tion 3.4. Gauge invariance of Π− ′
µ implies immediately, that in a general classically gauge

invariant chiral theory:

∇∗
νΠ

− ′
µν = 0, (A.15)

following the steps that led from (3.11) to (3.14). Furthermore, in section 3 we found that

the divergence of Π− ′
µν with respect to the first index µ is independent of the action:

∇∗
µΠ

− ′
µν =

i

2
δνtrγ̂

5
xx. (A.16)

Another action-independent result is that the anti-symmetric part of Π− ′
µν is also known

explicitly — since Π−
µν is manifestly symmetric, the antisymmetric parts of Π− ′

µν and δνj
w
µ

should cancel:

Π− ′ A
µν ≡ 1

2
(Π− ′

µν − Π− ′
νµ ) =

1

2
Fµν , (A.17)

where,

Fµν = δµj
w
ν − δνj

w
µ = −Tr(P̂−[ δµP̂− , δν P̂− ]) (A.18)

is manifestly local. Its divergence, after a few steps of algebra, turns out to be i
2δνtrγ̂

5
xx as

well. Applying (3.13) to Fµν and using the gauge transformation δωP̂− = iωP̂− − iP̂−ω,

we find:18

∇∗
µFµν = i

δ

δω
Tr[δν P̂−P̂−(ωP̂− − P̂−ω) − P̂−δν P̂−(ωP̂− − P̂−ω)]

= i
δ

δω
Trδν P̂−ω =

i

2
δνtrγ̂

5
xx .

(A.19)

Combining these results leads to:

∇∗
µΠ

− ′ A
µν =

1

2
∇∗
µΠ

− ′
µν (A.20)

In other words, the anti-symmetric and symmetric parts of Π− ′
µν each contribute half of

the anomalous divergence. The results (A.15), (A.16), (A.20) just derived hold for general

chiral partition functions, independent of the action, and in particular for our y 6= 0 mirror

theory. Verifying that these exact properties hold is an important check on any numerical

simulation.

B The Neuberger-Dirac operator and its perturbative expansion

The Wilson operator in our convention is given by:

Xmn = Mδmn +
1

2

∑

µ

−γµ
(

δm+µ̂,nUµ(m) − δm,n+µ̂U
†
µ(n)

)

+
1

2

∑

µ

r
(

2δmn − δm+µ̂,nUµ(m) − δm,n+µ̂U
†
µ(n)

)

, (B.1)

18We used identities P̂−δP̂−P̂− = 0 and δP̂−P̂− + P̂−δP̂− = δP̂−, both from P̂ 2
− = P̂−.
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where m,n label d-dimensional lattice sites, Uµ(m) = eiAµ(m), µ̂ is a unit vector in the

µ-th direction on the lattice, and δm,n is a d-dimensional Kronecker symbol. The Wilson

operator (B.1) is γ5 hermitean (X†)mn = γ5Xmnγ5. We define γ̂5 as follows:

γ̂5 =
1√
XX†

X, γ̂2
5 = 1 , (B.2)

in terms of which our convention for the GW operator is:

D = 1 − γ̂5γ5 = D0 +D1 +D2 + . . . , (B.3)

where D0,1,2 are the terms in the expansion of D around the trivial gauge background.

We take M = 1, r = −1 from now on. We define our finite-volume Fourier transforms as

follows, using ωN = e
2πi
N :

X(q, p) =
1

N
d
2

∑

m,n

ω−q·m+p·n
N Xmn . (B.4)

We also define the functions:

s(p) = sin
πp

N
, c(p) = cos

πp

N
. (B.5)

By σ0, we denote the 2
d
2 -dimensional unit matrix; in d=2, we use γ1 = σ1, γ2 = σ2, γ5 = σ3,

where σi are the Pauli matrices. Similar to (B.3), we also have an expansion of X in powers

of Aµ:

X(p, q) = X0(p, q) +X1(p, q) +X2(p, q) + . . . , (B.6)

where the trivial-background term is given by:

X0(p, q) = δp,qx0(p), where x0(p) ≡
(

1 −
∑

µ

2s2(pµ)

)

σ0 −
∑

µ

iγµs(2pµ) . (B.7)

The linear and quadratic terms of (B.6) are:

X1(p, q) = − 1

N2

∑

µ

Ãµ(p− q) ω
qµ−pµ

2
N [iγµc(pµ + qµ) + σ0s(pµ + qµ)] , (B.8)

X2(p, q) =

− 1

4N2

∑

µ

[

(1 − γµ) ω
qµ
N

∑

m

(Aµ(m))2 ω
(q−p)·m
N + (1 + γµ) ω

−pµ

N

∑

n

(Aµ(n))2 ω
(q−p)·n
N

]

where in X1 we use the Fourier transform of Aµ, defined by:

Ãµ(p) =
∑

m

ω−p·m
N Aµ(m). (B.9)

In terms of X0,X1,X2 the various terms in the expansion of the GW operator (B.3) are

described below. We begin with the free GW operator, specializing to two dimensions in
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the second line below:

D0(p, q) = 1 − 1
√

X0X
†
0

X0 = δp,q d0(p) ,

d0(p) =

(

a(p) id(p) + b(p)

id(p) − b(p) a(p)

)

, (B.10)

where, consistent with the notation of [38], we have defined the function of momenta:

a(p) ≡ 1 − 1 − 2s(p1)
2 − 2s(p2)

2

w(p)
,

b(p) ≡ s(2p2)

w(p)
, (B.11)

d(p) ≡ s(2p1)

w(p)
,

w(p) ≡
√

1 + 8s(p1)2s(p2)2 . (B.12)

The linear term in (B.3) is given by:

D1(p, q) =
1

w(p) + w(q)

(

−X1(p, q) +
x0(p)

w(p)
X†

1(p, q)
x0(q)

w(q)

)

, (B.13)

where X†
1(p, q) = γ5X1(p, q)γ5, and w, x0,X1 are as defined above. The second-order term

in (B.3) is then found to be:

D2(p, q) =
1

w(p) + w(q)

(

−X2(p, q) +
x0(p)

w(p)
X†

2(p, q)
x0(q)

w(q)

)

+

N
∑

{kµ=1}

1

[w(p) + w(q)][w(p) + w(k)][w(q) + w(k)]
× (B.14)

{

− w(p) + w(q) + w(k)

w(p)w(q)w(k)
x0(p) X

†
1(p, k) x0(k) X

†
1(k, q) x0(q)

+ x0(p) X
†
1(p, k) X1(k, q) +X1(p, k) X

†
1(k, q) x0(q) +X1(p, k) x

†
0(k) X1(k, q)

}

.

Both the linear and quadratic terms in the expansion are consistent with the ones found

in [55], the precise map being Dthis paper
1,2 = −

(

D
ref.[55]
1,2

)†
∣

∣

∣

∣

x0,X1,2↔x†0,X
†
1,2

, using our expres-

sions for x0,X1,X2.

C The chiral eigenvector basis

To compute the mirror polarization operator, we need explicit expressions for the expan-

sion (2.9) in terms of γ̂5 eigenvectors for A = 0. These were worked out in the appendix

of [38] and we give the A = 0 expansions (2.9) here:

χ+(x) =
∑

k

βk+vk(x) , χ+(x) =
∑

k

β
k
+u

†
k(x) (C.1)

ψ−(x) =
∑

k

αk−tk(x) , ψ−(x) =
∑

k

αk+w
†
k(x) ,
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where the sum is over momenta, k1, k2 = 1 . . . N , which label the independent eigenvectors

for a trivial gauge background.

The γ5 (γ̂5) eigenvectors t, v (w, u) are orthonormal (we note that the phase factor in

tk(x) is a matter of pure convenience and is included for agreement with [38]) and are:

vk(x) =
1

N
ωk·xN

(

1

0

)

,

u†k(x) =
1

N
ω−k·x
N (0 1)Vk , (C.2)

tk(x) =
1

N
ωk·xN e−iϕkσ3

(

0

1

)

,

w†
k(x) =

1

N
ω−k·x
N (1 0)Uk .

Here we use the unitary matrices Uk and Vk:

Uk =
1

2

(

2 − λk λke
−iϕk

−λ∗keiϕk 2 − λ∗k

)

, Vk =
1

2

(

(2 − λ∗k)e
iϕk −λ∗k

λk (2 − λk)e
−iϕk

)

, (C.3)

defined in terms of the positive imaginary part eigenvalues of the GW operator (the func-

tions a, b, d are as in (B.11)):

λk = a(k) + i
√

b(k)2 + d(k)2 , (C.4)

and the phase factor:

eiϕk ≡
{

i b(k)+d(k)√
b(k)2+d(k)2

, (k1, k2) 6= (N,N), (N/2, N/2), (N/2, N), (N,N/2).

1, (k1, k2) = (N,N), (N/2, N/2), (N/2, N), (N,N/2) .
(C.5)

Using these definitions, it is straightforward to verify that the w, u and t, v bases obey
∑

x(w
†
k(x) · wp(x)) = δkp,

∑

x(w
†
k(x) · up(x)) = 0, etc.; proving this only requires (in the

w, u case) use of the GW relation λk + λ∗k = |λk|2.

D Perturbative derivation of the anomaly

Here, we derive eq. (3.18). Now, we know that — see eq. (3.17), as well as (A.5), (A.6):

∑

µ

∇∗
µxΠ

′ ±
µν (x, y) = ∓ i

2

δtr γ̂5(x, x)[A]

δAν(y)

∣

∣

∣

∣

A=0

. (D.1)

For the purpose of comparing with finite-volume simulations of the mirror sector, we would

like to have a finite volume expression for the r.h.s. of (D.1).

To begin, we first define the Fourier transform of any free (i.e. translationally invariant)

polarization operator Πµ~x;ν~y similar to the usual continuum definition:

Π̃µν(k) ≡
∑

x

ω−k·x
N Πµν(x, 0) . (D.2)
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We then also define the Fourier transform of its divergence:

dν(k) ≡
∑

y

ω−k·y
N ∇∗

µx Πµν(x, y)
∣

∣

x=0
=
∑

µ

(1 − ω
kµ

N )Π̃µν(−k) . (D.3)

Finally, we similarly define the Fourier transform of the r.h.s. of (D.1):

tν(k) ≡
i

2

∑

y

ω−k·y
N

δtr γ̂5(0, 0)[A]

δAν(y)

∣

∣

∣

∣

A=0

, (D.4)

allowing us to recast (D.1) in the form d±ν (k) = ∓tν(k).
Now we can compute the function tν(k) explicitly, using (B.3) and (B.13) for D1, and

find:

tν(k) = ω
kν
2
N

1

N2

N
∑

{pµ=1}

f(p)f(p− k)

w(p)w(p − k)[w(p) + w(p − k)]
× (D.5)

{

s(2pν − kν) ǫ
αβξα(p)ξβ(p− k) − c(2pν − kν) ǫ

νµ [ξµ(p) − ξµ(p − k)]
}

, (D.6)

where ǫ12 = 1 and we have defined:

f(p) = 1 − 2s(p1)
2 − 2s(p2)

2 (D.7)

ξµ(p) =
s(2pµ)

f(p)
.

It is easy to check that in the small-k limit, eq. (D.5) reduces to:

tν(k) ≃ ǫνµ
2πkµ
N

1

2N2

N
∑

{pα=1}

c(2p1) + c(2p2) − c(2p1)c(2p2)

w(p)3

∣

∣

∣

∣

N→∞
+ O(k2) (D.8)

=
1

2π
ǫνµk

cont.
µ ,

where kcont.µ =
2πkµ

N is the continuum momentum; we note that this establishes the coeffi-

cient in (3.18).
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